Seeds and Plants Imported
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Index Seminum 2020
INDEX SEMINIUM 2020 1 Klaipėda 2020 GENERAL INFORMATION Postal address: Botanical Garden of Klaipeda University 92 Kretingos str. 92327 Klaipeda LITHUANIA Telephone: +370 46 398833 E-mail: [email protected] Status: Public Major activities: • introduction and investigation of wooden, ornamental, medicinal and spice plants; • monitoring and information management; • education and public awareness. Date of foundation: 1993 Area: 9.3 ha 2 120 100 80 60 40 Precipitation, mm 20 0 XII I II III IV V VI VII VIII IX X XI Months Fig. 1 Distribution of precipitation Data of Klaipėda meteorogical station 20 18 C 16 ° 14 12 10 8 6 4 Temperature, 2 0 XII I II III IV V VI VII VIII IX X XI Months Fig. 2 Average air temperature Data of Klaipėda meteorogical station Geographical situation: altitude: 3-14m a.s.l. latitude: 55º 43' 30" longitude: 21º 10' 25" Climatic conditions: Living plant collections (31-12-2019): • conifer and deciduous trees and shrubs – 1566 taxa • ornamental herbaceous (including bulbous plants and Rosa) – 1184 taxa • medicinal and spice plants – 460 taxa • indigenous on the territory of the Botanical Garden– 300 taxa 3 Seed collectors of Klaipeda University Botanical Garden: J. Ignotienė, L. Normantė, L. Razmuvienė A. Švanys. Text editor: R. Buivydė Authors: J. Ignotienė, A. Klimienė, L.Normantė, L. Razmuvienė, A. Švanys. PINOPHYTA CUPRESSACEAE 1. Chamaecyparis lawsoniana (A. Murray Bis) Parl. (HBU Vilnensis 2003) 2. Juniperus communis L. (unknown collector, 1994) 3. Metasequoia glyptostroboides Hu et Cheng (CZE Private collector 2002 ) 4. Metasequoia glyptostroboides Hu et Cheng ,Golden Rush‘ (PL Private collector 2007 ) 5. -
Mothers, Markets and Medicine Hanna Lindh
Mothers, markets and medicine The role of traditional herbal medicine in primary women and child health care in the Dar es Salaam region, Tanzania Hanna Lindh Degree project in biology, Bachelor of science, 2015 Examensarbete i biologi 15 hp till kandidatexamen, 2015 Biology Education Centre, Uppsala University Supervisors: Sarina Veldman and Hugo de Boer 1 Abstract Traditional medicine is still the most common primary healthcare used in Tanzania, especially among women. The ethnobotanical studies performed in Tanzania have not explored women’s traditional medicine, with the result that we do not know that much about it, including if women’s usage of medicinal plants create a threat against the medicinal flora’s biodiversity or not. Field studies consisting of interviews and collections of medicinal plants were carried out in the Dar es Salaam region in Tanzania before identifying the collected specimens by DNA barcoding, literature and morphology in Uppsala, Sweden. The 33 informants belonged to 15 different ethnic groups and 79% of them had migrated to Dar es Salaam. A total of 249 plant species were mentioned for women’s healthcare and 140 for children’s healthcare. The medicinal plants frequently reported as used for women’s health and childcare during structured interviews and free-listing exercises were Senna occidentalis/ Cassia abbreviata, Zanthoxylum sp., Clausena anisata, Acalypha ornata and Ximenia sp. The most salient uses of medicinal plants by women were during pregnancy, childbirth, menstruation, to induce abortion, and for cleansing infants and treating convulsions in children. Most of the fresh specimens were collected from disturbance vegetation. The informants having most interview answers in common were the market vendors, healers and herbalists and they were the only informants that mentioned species listed as vulnerable on the IUCN Red List of Threatened Species. -
Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT Salix recurvigemmata A.K. Skvortsov f. variegata Schumikh., O.E. Epanch. & I.V. Belyaeva Biarmiae 2020 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ СПИСОК СЕМЯН И СПОР, ПРЕДЛАГАЕМЫХ ДЛЯ ОБМЕНА БОТАНИЧЕСКИМ САДОМ ИМЕНИ А.Г. ГЕНКЕЛЯ ПЕРМСКОГО ГОСУДАРСТВЕННОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА Syringa vulgaris L. ‘Красавица Москвы’ Пермь 2020 Index Seminum 2020 2 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ Дорогие коллеги! Ботанический сад Пермского государственного национального исследовательского университета был создан в 1922 г. по инициативе и под руководством проф. А.Г. Генкеля. Здесь работали известные ученые – ботаники Д.А. Сабинин, В.И. Баранов, Е.А. Павский, внесшие своими исследованиями большой вклад в развитие биологических наук на Урале. В настоящее время Ботанический сад имени А.Г. Генкеля входит в состав регионального Совета ботанических садов Урала и Поволжья, Совет ботанических садов России, имеет статус научного учреждения и особо охраняемой природной территории. Основными научными направлениями работы являются: интродукция и акклиматизация растений, -
An Assessment of Seed Propagation of Oilferous Plant Species with Potential for Biodiesel Production
PREREQUISITES FOR BIOCROPS UP-SCALING I: AN ASSESSMENT OF SEED PROPAGATION OF OILFEROUS PLANT SPECIES WITH POTENTIAL FOR BIODIESEL PRODUCTION Agnes MS Nyomoraa and Esther P Masomheb aBotany Department, University of Dar es Salaam, P.O. Box 35060 Dar es Salaam, Tanzania E-mail: [email protected] bIlala Municipal. P.O. Box 2026, Dar es Salaam Email: [email protected] ABSTRACT This study assessed the propagation of non- edible oil plant species with potential for biodiesel production on 4 potting media forest, sandy, clay and loamy soil using seeds. Investigation was based on assessment of seed germination capacity, rooting ability and seedling growth rate of six selected plant species Telfairia pedata, Jatropha curcas, Excoecaria bussei, Croton macrostachyus, Croton megalocarpus and Ricinus communis. Completely randomized design (CRD) was adopted for this study using 10 seeds per plot (5L capacity pots) with 4 replications. An ANOVA was conducted to test for the significance of the treatments while Tukey-Kramer Multiple Comparisons test was used to test for the differences between treatment means. Species giving highest germination percentage also portrayed highest germination energy. Telfairia pedata grew luxuriously in all soil types while Jatropha curcas performed poorly in almost all soil types except in loam soil. Ricinus communis and Excoecaria bussei growth were moderate. Based on propagation ability and growth performance; multiplication by seeds was recommended for Telfairia pedata, Ricinus communis, Excoecaria bussei and Telfairia pedata but not for Croton macrostachyus, Croton megalocarpus which did not germinate at all. Croton seems to be recalcitrant and probably needed special attention and shortest storage time from harvesting prior to sowing. -
Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
Plant Species Yielding Vegetable Oils Used in Cosmetics and Skin Care Products
African Journal of Biotechnology Vol. 4 (1), pp. 36-44, January 2005 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2004 Academic Journals Full Length Research Paper Taxonomic perspective of plant species yielding vegetable oils used in cosmetics and skin care products Mohammad Athar1*and Syed Mahmood Nasir2 1California Department of Food and Agriculture, 2014 Capitol Avenue, Suite 109, Sacramento, CA 95814, USA. 2Ministry of Environment, Capitol Development Authority, Block IV, Islamabad, PAKISTAN. Accepted 17 November, 2004 A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetics and skin care products. These species belonged to 74 genera and 45 plant families and yielded 79 vegetable oils. Family Rosaceae had highest number of vegetable oil yielding species (five species). Most of the species were distributed in two families (Anacardiaceae and Asteraceae) containing four species each, followed by seven families (Boraginaceae, Brassicaceae, Clausiaceae, Cucurbitaceae, Euphorbiaceae, Fabaceae and Lamaceae) containing three species each of oil yielding plants. Five families (Apiaceae, Dipterocarpaceae, Malvaceae, Rubiaceae and Sapotaceae) have two species each of vegetable oil yielding plants. Two monocotyledonous families Arecaceae and Poaceae contained three species each of oil yielding plants. Remaining 28 vegetable oil yielding species were distributed in 28 plant families, which included two species of gymnosperms distributed in family Cupressaceae and Pinaceae. These vegetable oils are natural and can be used as the base for mixing ones own aromatherapy massage or bath oil, or if preferred can be used as ready blended massage oils or bath oils. -
Igutettix Oculatus.Pdf
Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Igutettix oculatus Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Cały obszar PRA. Igutettix oculatus to niewielki owad z rodziny Cicadellidae, który rozwija się głównie na bzach lilakach, ale też na innych roślinach z rodziny oliwkowatych takich jak ligustr czy jesion wyniosły. Owad ten wysysa płynną zawartość komórek roślinnych z liści. W miejsce płynu dostaje się powietrze i w efekcie liście pokryte są licznymi, białymi plamami a ich brzegi mogą zasychać. Szkodnik powoduje pogorszenie kondycji zdrowotnej oraz utratę walorów dekoracyjnych roślin, szczególnie, jeżeli pojawi się w dużej liczebności. Igutettix oculatus znany jest już z krajów sąsiednich (Litwa, Białoruś) i wyraźnie powiększa swój zasięg w kierunku południowo-zachodnim. Szkodnik pojawił się na obszarze PRA w roku 2017 (pn.-wsch. część kraju), a jego ekspansja na pozostałą część obszaru PRA wydaje się kwestią niedalekiej przyszłości. Łagodniejszy klimat panujący na obszarze PRA może sprzyjać gatunkowi i być przyczyną nawet większej szkodliwości niż na obszarze aktualnego występowania. Po dostaniu się na obszar PRA, najprawdopodobniej zaaklimatyzuje się i stworzy stabilne oraz liczne populacje. Nie opracowano żadnych metod zwalczania szkodnika, co może być powodem znacznych uszkodzeń roślin, szczególnie w początkowej fazie inwazji, gdy elementy oporu środowiska (pasożyty, drapieżniki) nie będą przystosowane do tego agrofaga. Trudno przewidzieć jaki wpływ szkodnik będzie miał na jesiony wyniosłe rosnące na obszarze PRA. Jeżeli okaże się, że w znacznym stopniu osłabia te drzewa i dodatkowo jest wektorem 'Candidatus Phytoplasma fraxini', wówczas może dojść nawet do wydzielania się jesionów z siedlisk leśnych i nasadzeń. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. -
View/Download
Research Article ISSN 2641-4295 Food Science & Nutrition Research Anti-Oxidant Vitamins, Minerals and Tannins in Oil from Groundnuts and Oyster Nuts Grown in Uganda Juliet Hatoho Musalima*, Patrick Ogwok and Diriisa Mugampoza *Correspondence: Juliet H Musalima, Department of Food Technology, Faculty of Department of Food Technology, Faculty of Science, Kyambogo University, Kampala, Uganda. Science, Kyambogo University, Kampala, Uganda. Received: 15 April 2019; Accepted: 09 May 2019 Citation: Juliet H Musalima, Patrick Ogwok, Diriisa Mugampoza. Anti-Oxidant Vitamins, Minerals and Tannins in Oil from Groundnuts and Oyster Nuts Grown in Uganda. Food Sci Nutr Res. 2019; 2(2): 1-7. ABSTRACT Lipids contain fat soluble vitamins, sterols and polyphenols. This study aimed to determine the anti-oxidant vitamins, minerals and tannins in oil from groundnuts and oyster nuts grown in Uganda. Methods used included; high performance liquid chromatography, atomic absorption spectroscopy and UV spectroscopy. Groundnut oil contained nd to 559 µg/100 g of Vitamin A. Acholi white had the highest vitamin A content. Beta-carotene levels ranged from 0.21 to 1.72 µg/100 and vitamin E varied from 0.88 to 7.19 mg/100 g. Oil from Serenut 6Tan, 7Tan, 13Tan, Rudu red and Rudu white contained 37%, 39%, 48%, 42% and 47% of recommended daily intake for vitamin E. Vitamin A, beta-carotene and vitamin E in oyster nut oil ranged from 19.00 to 29.17 µg/100 g, 2.20 to 3.69 mg/100 g and 0.9 to 1.77 mg/100 g, respectively. The most abundant mineral in groundnut oil was calcium at 0.05 to 3.41 mg/100 g and the least was iron at 0.02 to 0.35 mg/100 g. -
Telfairia Pedata Curcubitaceae (Sims) Hook
Telfairia pedata (Sims) Hook. Curcubitaceae LOCAL NAMES Chinese (xi fei li,wen li); English (Zanzibar oil vine,queen's nut,oyster nut); French (koueme,chataigne de l'Inhambane,bane); German (talekurbis); Portuguese (sabina,castanha de l'Inhambane); Spanish (kueme); Swahili (mkweme,kweme) BOTANIC DESCRIPTION Telfairia pedata is a liane reaching a height of up to 30 m when using tall trees as support. Stem herbaceous, ribbed, glabrous, tendrilled and becoming woody with age. Leaves petiolate, 5-7 foliolate; median leaflet broadly lanceolate or elliptic, acuminate, acute narrowed into the petiole, obscurely sinuate-toothed, glabrous or with sparse scattered hairs especially on the main nerves; lateral leaflets slightly broader and occasionally lobed on the outer side at the base; petiolules up to 6.5 cm long; petiole glabrous, slightly hairy, 9-10 cm long. Male flowers in racemes 6-23 cm; bracts 0.5-1.0 cm long and broad, pubescent, adnate to the pedicels below, expanded and toothed above; pedicels 5-30 mm long; receptacle-tube campanulate, pubescent outside 5mm long; lobes triangular-acuminate, pubescent and coarsely toothed, 1.6 cm long, petals obovate, 2 cm long, pinkish-purple and green striped basally; stamens 3-5. Female flowers with stalks 6.5-14 cm long; ovary green with an expanded base collar. 2.5 cm across, 10-12 ribbed, pubescent; receptacle-tube very short, petals larger than in male flowers. Fruit green, ellipsoid with a lobed expanded base, bluntly 10-ribbed 45-60 cm long and 20 cm in diameter, weighing up to 15 kgs and dehiscent apically, containing between 70-150 seeds/fruit. -
Introduction and Uses Telfairia Pedata
ECHO East Africa Notes | EAN Issue #1 Telfairia pedata Introduction and uses (/resources/cd4964b8-18dc-46d8-b94f-43b40d72bf9f)Telfairia pedata is a perennial climbing plant grown throughout eastern and central Africa, though it is native only to Tanzania and northern Mozambique. (A similar species, Telfairia occidentalis, is grown in West Africa.) It is grown for its large (4 cm in diameter) seeds, which resemble oysters and, thus, are known as “oyster nuts.” Oyster nuts are rich in protein (≈30%) and oil (over 60%), the oil of which is a good source of fat. Despite their high oil content, they can keep for up to eight years and remain palatable. Eaten roasted, boiled, or raw, their flavor is comparable to that of hazelnut or almond. One popular East African dish includes roasted oyster nuts, pounded into a paste, and cooked with fish in a banana leaf. In traditional Chagga society in Tanzania, oyster nuts are fed to nursing mothers to stimulate lactation and increase the flow of milk. The seeds are also pressed for cooking oil, and the seedcakes left over from this process are excellent as livestock fodder. 1 / 3 Botanical description T. pedata is not a nut tree, but rather a member of the Cucurbitaceae family. Female plants produce purple-pink fringed flowers, which develop after fertilization into very large ellipsoid gourds that can weigh up to 15 kg. Each of these ribbed gourds contains 100 to 150 flat, oyster-shaped seeds (“nuts”). The seeds are opened in a manner much like shucking an oyster: aftercutting around the edge, one pries open the fibrous shells to extract the kernel. -
Mineral and Proximate Composition of Oysternut, the Common Nuts Consumed by Lactating Mother in Kilimanjaro Region
GSJ: Volume 9, Issue 5, May 2021 ISSN 2320-9186 1982 GSJ: Volume 9, Issue 5, May 2021, Online: ISSN 2320-9186 www.globalscientificjournal.com MINERAL AND PROXIMATE COMPOSITION OF OYSTERNUT, THE COMMON NUTS CONSUMED BY LACTATING MOTHER IN KILIMANJARO REGION. Author’s information Mariam Ibrahim1, Milinga Francis2 1. Tanzania Industrial Research and Development Organization, Dar es Salaam, Tanzania 2. Tanzania Food and Nutrition Centre Corresponding author; Mariam Hussein Ibrahim Mobile: +255 713 669 202, Email [email protected] ABSTRACT Background The oysternut, or kweme is the seed of the liana Telfairia pedata. Oysternuts are often consumed by pregnant women and they are said to have a high protein content (about 25%) and high oil content (55 – 60%). The oil has beneficial minerals and delicious, sweet flavor. The seeds are said to have valuable galactagogue property and are in great demand amongst native mothers who consume them shortly after the birth of a child as a tonic in order to regain their strength and also to improve the flow of milk. The source of galactagogue property of oysternuts is may be due to the presence of caloric value and mineral contents although no scientific data documented on the mineral profile and proximate composition of oysternuts. Therefore the study aimed to determine proximate composition and mineral content in the oyster nuts which may be contributing to the milk production of lactating mothers. Methods The method used in mineral analysis was the atomic absorption spectroscopy (AAS) per AOAC (2010 and oven drying and Kjeldahl method AOAC (2005/6) for proximate composition. Results The results were as follows; mineral contents of the oysternuts were; Mg contains 43.2Mg/100g, Ca 20.97Mg/100g, Zn 0.4Mg/100g, and Fe 0.18Mg/100g. -
UNITED STATES DEPARTMENT of , Ai Rionlti] R
L Ib H A H T RECEIVED MAR 1 19' UNITED STATES DEPARTMENT OF , Ai rionlti] r INVENTORY No. 87 Washington, D. C. T Issued February, 1929 PLANT MATERIAL INTRODUCED BY THE OFFICE OF FOREIGN PUNT INTRODUCTION, BUREAU OF PLANT INDUSTRY, APRIL 1 TO JUNE 30, 1926 (NOS. 66699 TO 67836) CONTENTS Pag* Introductory statement - 1< Inventory - 3 Index of common and scientific names— .-._. „. ,. — 49 INTRODUCTORY STATEMENT agricultural explorers were carrying on their investigations in foreign lands during the three-month period represented by this eighty-seventh inventory. David Fairchild, in company with P. H. Dorsett, made an extended tour along the northern coast of Sumatra and also spent some time in Java and Ceylon. Their itinerary included the Sibolangit Botanic Garden, near Medan, Sumatra, and the Hakgala Botanic Garden, Newara Eliya, Ceylon. The material collected came from these botanic gardens, from the markets of the native villages visited, and from the wild. It consisted for the most part of fruit-bearing plants, ornamentals, and leguminous plants of possible value as cover crops for the warmer parts of the United States. Breeders of small fruits will be interested in the numerous species of Rubus (Nos. 67592 to 67604; 67728 to 67740) obtained mostly in Sumatra. Sev- eral species of Ficus (Nos. 67557 to 67570; 67696 to 67705) from Sumatra will be tested in southern Florida, where already a number of these wild figs have proved popular as shade trees. F. A. McClure continued to work in the general vicinity of Can- ton, China, collecting plant material largely from the native markets of the neighboring villages.