Lantana Camara (Verbenaceae) in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Lantana Camara (Verbenaceae) in South Africa Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa J-R. Baars & S. Neser ARC - Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa Lantana camara, a highly invasive weed in many countries, has been targeted for biological control in South Africa since the early 1960s. An earlier review in 1991 indicated that, despite the establishment of several natural enemy species, the programme has largely been unsuccessful. In this paper we review initiatives undertaken during the 1990s and discuss (i) the status of the natural enemies established on the weed, (ii) factors that have limited the impact of these agents, (iii) the potential of eleven new biocontrol candidates currently under evaluation for re- lease and (iv) the problem of expanded host ranges of imported natural enemies under labora- tory conditions. Ultimately, the success of the programme will depend on the establishment of a suite of natural enemies, attacking several parts of the weed, which are able to cope with the ex- treme variability and wide distribution of L. camara in South Africa. Despite the problems associ- ated with the programme, L. camara remains a candidate for biological control in South Africa. Key words: Lantana camara, varieties, biological weed control, natural enemies, host-specificity testing, Lippia. Lantana camara sensu lato (Verbenaceae; Fig. 1), a compounds, notably the pentacyclic triterpenes floriferous, prickly, thicket-forming shrub, which (Kellerman et al. 1996), lantadene A and B (Morton is commonly known as lantana, originates from 1994), which if consumed can cause photosensiti- tropical and subtropical South and Central Amer- zation, liver and kidney damage, paralysis of the ica (Stirton 1977). As a popular ornamental plant, gall bladder, intestinal haemorrhage and death several varieties (cultivars) of lantana have been within 1–4 days in cattle, sheep and horses. Live- widely distributed throughout the tropics, sub- stock previously exposed to lantana are less likely tropics and warm temperate regions of the world. to suffer from the acute symptoms caused by Following its worldwide introduction, lantana has ingestion, while those with no previous exposure become naturalized in some 50 countries and is are likely to be severely affected. The expected rated as one of the world’s worst weeds (Holm annual impact of cattle mortalities from lantana et al. 1977). poisoning in South Africa was estimated to be in Lantana is an aggressive, vigorously growing excess of R1.7 million (Kellerman et al. 1996). weed that tolerates a wide variety of environmen- Lantana is an extremely variable entity that pres- tal conditions, but thrives better in humid than in ents a complex taxonomic problem (Munir 1996). dry regions. In South Africa it is presently natural- Its conspicuous variability in general morphology ized in the warm, moist subtropical and temperate (Howard 1970; Smith & Smith 1982; Cilliers 1987a; regions (Oosthuizen 1964; Stirton 1977) of the Munir 1996), physiology and genetic composition Northern Province, Gauteng, Mpumalanga and (Spies & Stirton 1982a,b,c; Spies 1984; Spies & Du KwaZulu-Natal, as well as the southern coastal re- Plessis 1987), has led to the recognition of hun- gions of the Eastern and Western Cape Provinces dreds of cultivars or varieties, all of which are clas- (Fig. 2). Lantana invades river-banks, mountain sified as L. camara. The weed is a polyploid slopes and valleys, pastures and commercial complex, presumably derived from the deliberate forests where it forms impenetrable stands that hybridization of species in the genus Lantana obstruct access and utilization. Through allelo- (Stirton 1977) and, subsequent to naturalization in pathic suppression of indigenous plant species, South Africa, hybridization was shown to con- lantana invasions also interrupt regeneration tinue in the field (Spies & Stirton 1982a,b,c). Spies processes (Gentle & Duggin 1997a) and reduce the (1984) argued that L. camara is in an active phase of biodiversity of natural ecosystems. evolution, with intermediates in a transitional Lantana leaves, stems and fruits contain toxic stage of speciation. Although the species is consid- 22 African Entomology Memoir No. 1 (1999): 21–33 50 mm Lantana camara. (Drawn by R. Weber, National Botanical Institute, Pretoria.) ered to be unstable, certain varieties dominate in strategy (Gentle & Duggin 1997b). However, the localized areas and remain relatively stable in use of fires is not always a suitable option as infes- space and time. Following ecological disturbances, tations are often close to, or in, indigenous forests, lantana stands may recolonize as a mixture of vari- grazing lands and plantations. The difficulties and eties, but soon revert to the former dominant con- expenses incurred by conventional control mea- dition (Spies & Du Plessis 1987). sures have fostered the hope that biological con- Chemical and mechanical control of lantana was trol may provide a solution. reviewed by Cilliers & Neser (1991) who con- The biological control programme, including cluded that, although very effective, these meth- previously introduced natural enemies on L. ods are often labour-intensive and expensive. camara in South Africa, was reviewed by Cilliers & These control measures usually offer only tempo- Neser (1991), while other aspects of the weed were rary relief unless continual follow-up treatments reviewed by Swarbrick et al. (1995) and Munir are used. Controlled low- to moderate-intensity (1996). In this paper we mainly review biocontrol fires appear to reduce invasions by lantana, and initiatives undertaken during the 1990s, notably (i) can be an effective, preventative management the status of the natural enemies previously estab- Baars & Neser: Biological control of Lantana camara 23 Distribution of Lantana camara in South Africa. (Drawn by L. Henderson, Plant Protection Research Institute, Pretoria.) lished on lantana, (ii) the factors that have influ- The third species, the noctuid moth Neogalea enced the efficacy of these natural enemies, (iii) sunia (Guenée) (= N. esula (Druce), failed to estab- new biocontrol candidates under evaluation for lish despite introductions from Trinidad in 1962 release in South Africa and (iv) the problem of and 1968 and later from Australia in 1983 (Cilliers expanded host ranges of natural enemies under & Neser 1991). The remaining two species, Salbia laboratory conditions. haemorrhoidalis Guenée and Teleonemia scrupulosa Stål became established following the initial re- STATUS OF NATURAL ENEMIES leases (Table 2). ESTABLISHED IN SOUTH AFRICA Although widely established in South Africa, the Biological control of lantana in South Africa was flower-feeding pyralid, S. haemorrhoidalis, occurs initiated during 1961/62, with the introduction of mostly in low numbers and its impact on the weed five natural enemy species (Oosthuizen 1964). is unknown. By contrast, the sap-sucking lace bug, However, two of these, Hypena laceratalis Walker T. scrupulosa, has become widely established in (= H. strigata (F.)) and Ophiomyia lantanae high numbers throughout the range of L. camara in (Froggatt), were already established in South Af- South Africa. It is uncertain whether the later im- rica (Table 1) and were misidentified during a portation and release of additional genetic mate- pre-introductory survey conducted by Oost- rial from various countries (Table 2) has influenced huizen (1964). The leaf-feeding moth Hypena the efficacy of the tingid in South Africa (Cilliers & jussalis Walker was subsequently found to be syn- Neser 1991). Feeding damage is often extensive, onymous with H. laceratalis, while specimens of O. causing periodic defoliation of L. camara popula- lantanae were misidentified as O. rhodesiensis tions, with damaged plants suffering reductions in Spencer, which had been described from Zimba- seed set (Cilliers 1983, 1987a). Tingid populations bwe (Cilliers & Neser 1991). Hypena laceratalis is and their resultant damage peak in mid-summer widespread and damages seedlings and new but rapidly decline towards winter. Teleonemia growth in summer (Table1). Ophiomyia lantanae is scrupulosa is considered to be the most effective widespread and abundant, but has little impact on natural enemy of lantana in South Africa at present. seed viability (Cilliers & Neser 1991) (Table 1). Two leaf-mining hispine beetles, Octotoma 24 African Entomology Memoir No. 1 (1999): 21–33 Status of natural enemies present on Lantana camara in South Africa prior to the initiation of the biological control programme (‘generalists’ not included). Order/Family Natural enemy species Mode of attack Status Limitations Diptera Agromyzidae Ophiomyia lantanae (Froggatt) Fruit miner Widely established and abundant Low impact on seed viability; heavy parasitism Lepidoptera Noctuidae Hypena laceratalis1 Walker Leaf chewer Widely established with considerable Larvae are only active during late damage to seedlings and new growth. summer and autumn and are often Also attacks native Lippia and Priva parasitized species Pterophoridae Lantanophaga pusillidactyla1 Flower, fruit and Widely established, but present in low Low abundance and possible (Walker) seed chewer numbers. Also attacks native Lippia high levels of parasitism species Tortricidae Epinotia lantana1 (Busck) Flower-peduncle Widely established Unknown and shoot-tip borer Gracillariidae Cremastobombycia lantanella1 Leaf miner Widely established, but present in
Recommended publications
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Biological Control of Lantana, Prickly Pear, and Hamakua Pamakani Inhawah: a Review and Update
    BIOLOGICAL CONTROL OF LANTANA, PRICKLY PEAR, AND HAMAKUA PAMAKANI INHAWAH: A REVIEW AND UPDATE Clifton J. Davis, Ernest Yoshioka, and Dina Kageler ABSTRACT The biological control of noxious weeds in Hawai`i has been carried on intermittently since 1902, when insects and diseases of lantana (Lantana camara) were sought in Mexico by the Territorial Board of Agriculture and Forestry (now Hawai`i Department of Agriculture). This approach was subsequently employed for the control of 20 other noxious weed pests between the 1940s and 1970s. Lantana was the first weed to be controlled by this method in the U.S. Results were very dramatic in some areas of the State, especially after later introductions by Hawai`ian and Australian entomologists resulted in heavy stress on lantana. In addition to lantana, excellent results have been obtained in the biological control of cacti (Opuntia spp.), and Hamakua pamakani (Ageratina riparia). Prior to the introduction of cactus insects in 1949, 66,000 a (26,400 ha) of Parker Ranch range lands on Hawai`i Island were infested with cacti. By 1965, 7,610 a (< 3,080 ha) remained infested, the result of three introduced insects and an accidentally introduced fungus disease; the red-fruited variety of cactus is particularly susceptible to the fungus. A spineless variety of the cactus occurs in the 'Ainahou-Poliokeawe Pali sector of Hawai`i Volcanoes National Park, and biocontrol efforts are in progress. With the introduction of insects from Mexico and a foliar fungus disease from Jamaica, Hamakua pamakani is under excellent control on many ranch as well as privately owned and government lands on Hawai`i Island.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Chrysanthemoides Monilifera Ssp
    MANAGEMENT OF BONESEED (CHRYSANTHEMOIDES MONILIFERA SSP. MONILIFERA) (L.) T. NORL. USING FIRE, HERBICIDES AND OTHER TECHNIQUES IN AUSTRALIAN WOODLANDS Rachel L. Melland Thesis submitted for the degree of Doctor of Philosophy School of Agriculture, Food and Wine University of Adelaide August 2007 Table of Contents TABLE OF CONTENTS ....................................................................................................... II ABSTRACT ............................................................................................................................ VI DECLARATION ................................................................................................................ VIII ACKNOWLEDGEMENTS .................................................................................................. IX CHAPTER 1: INTRODUCTION ............................................................................................ 1 1.1 AIMS OF THIS THESIS .......................................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ............................................................................... 5 2.1 PROCESSES OF NATIVE ECOSYSTEM DEGRADATION ............................................................ 5 2.2 GLOBAL PLANT INVASIONS – ECOSYSTEM DEGRADING PROCESSES .................................... 6 2.3 THE ENVIRONMENTAL WEED PROBLEM IN AUSTRALIA ..................................................... 10 2.4 CAUSES AND PROCESSES OF INVASIVENESS .....................................................................
    [Show full text]
  • Brief Review on Lantana Camera
    International Journal of Secondary Metabolite 2019, Vol. 6, No. 2, 205-210 https://dx.doi.org/10.21448/ijsm.577172 Published at http://ijate.net/index.php/ijsm http://dergipark.org.tr/ijsm Review Article Brief Review on Lantana camera Rohit Shankar Mane 1, Rachana Dattatray Nagarkar 2, Pragati Pramod Sonawane 3, Ankala Basappa Vedamurthy *,1 1 Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India. 2 Sanjivani Arts, Commerce, Science College Kopargaon, Maharashtra 423603, India 3 Department of Microbiology, Access Health Care, Pune, Maharashtra, India. Abstract: Medicinal plants are widely spread in nature with their unique habitats ARTICLE HISTORY and effective medicinal properties. One of them plant is Lantana Camera. The L. Received: February 06, 2019 camera is well known invasive weed. Used to cure several diseases in Ayurvedic Accepted: June 09, 2019 preparations with different formulations. This plant has great ethnobotany and Pharmacology however it is lagging behind in the list of medicinal plants for their KEYWORDS applications in drug preparations due to mere research study and awareness. Therefore present review may help to reveal different aspects of L. camera with Lantana camera, their awareness in society. Ethnobotany, Pharmacology 1. INTRODUCTION The term "biodiversity hotspot" was coined by the British biologist Norman Myers in 1988. He described them as a biogeographic region by characterizing their exceptional levels of plant endemism and serious levels of habitat loss [1]. Further, in between 1989-1996, Conservation International (CI) adopted ‘Myers hotspots criteria’ and they made one organization for the reassessment of the hotspots concept and in 2005 they have published an revised title “Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions” [2].
    [Show full text]
  • Current and Potential Use of Phytophagous Mites As Biological Control Agent of Weeds
    Chapter 5 Current and Potential Use of Phytophagous Mites as Biological Control Agent of Weeds Carlos Vásquez, Yelitza Colmenárez, José Morales-Sánchez, Neicy Valera, María F. Sandoval and Diego Balza Additional information is available at the end of the chapter http://dx.doi.org/10.5772/59953 1. Introduction Biological control of weeds by using phytophagous mites may help to contain infestations and reduce their spread in time. Although, eradication is not the goal due to the vastness of the areas, the most desirable scenario is achieved when weeds are no longer a concern and no other control is necessary. However, biological control should not be considered the unique strategy to face weed problems, thus commonly; other methods are still required to attain the desired level of control. There is an increasingly interest in using mites for biological control of weeds, primarily those belonging to Eriophyidae because of they are host-specific and often weaken the host plant affecting plant growth and reproduction. Although eriophyid mite species impact the fitness of their host plant, it is not clear how much they have contributed to reduction of the population of the target weed. In some cases, natural enemies, resistant plant genotypes, and adverse abiotic conditions have reduced the ability of eriophyid mites to control target weed popula‐ tions. Besides, susceptibility of eriophyids to predators and pathogens may also prevent them from achieving population densities necessary to reduce host plant populations. In addition to eriophyid mites, tetranychid mites are also being considered as an alternative for weed control. The gorse spider mite, Tetranychus lintearius Dufour, has shown to reduce shoot growth on gorse (Ulex europaeus L.) by around 36% in impact studies conducted over 2.5 years in Tasmania.
    [Show full text]
  • Review of the Declaration of Lantana Species in New South Wales Review of the Declaration of Lantana Species in New South Wales
    NSW DPI Review of the declaration of Lantana species in New South Wales Review of the declaration of Lantana species in New South Wales New South Wales Department of Primary Industries Orange NSW 2800 Frontispiece. A flowering and fruiting branch of the common pink variety of Lantana camara, near Copmanhurst (NSW north coast, October 2005) (Source: S. Johnson, NSW DPI). © State of New South Wales through NSW Department of Primary Industries 2007. You may copy, distribute and otherwise freely deal with this publication for any purpose, provided that you attribute NSW Department of Primary Industries as the owner. ISBN 978 0 7347 1889 1 Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (December 2007). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of New South Wales Department of Primary Industries or the user’s independent adviser. Job number 7262 This document was prepared by Dr Stephen Johnson Weed Ecologist Weeds Unit Biosecurity, Compliance and Mine Safety Telephone: 02 6391 3146 Facsimile: 02 6391 3206 Locked Bag 21 ORANGE NSW 2800 Figure 1. White and purple flowering varieties of the ornamental Lantana montevidensis planted in a median strip, Griffith (south western NSW, September 2005) (Source: S. Johnson, NSW DPI). iv REVIEW OF THE DECLARATION OF LANTANA SPECIES IN NSW CONTENTS EXECUTIVE SUMMARY 1 SCOPE OF THIS REVIEW 3 REVIEW OF THE DECLARATION OF LANTANA SPECIES IN NSW 5 NOMENCLATURE 5 Lantana camara 5 Lantana montevidensis 5 SPECIES DESCRIPTIONS 5 Lantana camara 5 Lantana montevidensis 7 TAXONOMY 9 Family Verbenaceae 9 Lantana genus 9 The Lantana camara species aggregate 9 Varieties of L.
    [Show full text]
  • Hemiptera: Membracidae Rafinesque, 1815) Del Sendero Principal De La Quebrada La Vieja (Colombia: Bogotá D.C.)
    Algunas anotaciones sobre la biología de las espinitas (Hemiptera: Membracidae Rafinesque, 1815) del sendero principal de la Quebrada La Vieja (Colombia: Bogotá D.C.) Mario Arias Universidad Pedagógica Nacional Facultad de Ciencia y Tecnología Licenciatura en Biología Bogotá D.C., Colombia 2018 Algunas anotaciones sobre la biología de las espinitas (Hemiptera: Membracidae Rafinesque, 1815) del sendero principal de la Quebrada La Vieja (Colombia: Bogotá D.C.) Mario Arias Trabajo de grado presentado como requisito parcial para optar al título de: Licenciado en Biología Director: Martha Jeaneth García Sarmiento MSc Línea de investigación: Faunística y conservación con énfasis en los artrópodos Universidad Pedagógica Nacional Facultad de Ciencia y Tecnología Licenciatura en Biología Bogotá D.C., Colombia 2018 Agradecimientos Agradezco particularmente a la profesora Martha García por guiar este trabajo de grado y por sus valiosos aportes para la construcción del mismo, sus correcciones, sugerencias, paciencia y confianza fueron valiosas para cumplir esta meta. Al estudiante de maestría de la Universidad CES Camilo Flórez Valencia por la bibliografía y corroboración a nivel especifico de los membrácidos. Al estudiante de maestría del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) Nicolás Quijano por su invaluable ayuda en la obtención de libros en Costa Rica. Al licenciado en Biología Santiago Rodríguez por sus reiterados ánimos para llevar a cabo este trabajo. Al estudiante Andrés David Murcia por el préstamo de la cámara digital. Al M.Sc Ricardo Martínez por el préstamo de los instrumentos de laboratorio. Agradezco especialmente a mi familia, la confianza y creencia que depositaron en mí, ha sido el bastón con el cual he logrado sobreponerme a malos momentos, por eso este pequeño paso es una dedicación a Edilma Arias y Ángela Mireya Arias, indudablemente son personas trascendentales e irrepetibles en mi vida.
    [Show full text]
  • A Brief Review On: Therapeutical Values of Lantana Camara Plant
    Review Article [Saxena et al., 3(3): Mar., 2012] ISSN: 0976-7126 INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES A brief review on: Therapeutical values of Lantana camara plant Mamta Saxena*, Jyoti Saxena 1 and Sarita Khare 2 1, Department of chemistry and 2, Department of zoology Sarojini Naidu Government Girls Post Graduate (Autonomous) College, Bhopal, (M.P.) - India Abstract In view of the fact that ancient time, plants have been a tremendous source of medicine. Since very long time Lantana camara is reported to be used in traditional medicine system for the treatment of itches, cuts, ulcers, swellings, bilious fever, cataract, eczema and rheumatism. Different parts of the plants are used in the treatment of cold, headache, chicken pox, eye injuries, whooping cough, asthma, bronchitis and arterial hypertension. Lantana camara has scientifically studied for various therapeutical activities like antioxidant, antibacterial, antipyretic, larvicidal, insecticidal, antimicrobial, wound healing and anti-hyperglycemic. The present review is an effort to give a detailed survey of the literature on its, phytochemistry, traditional uses and therapeutical studies. Key-Words: Lantana camara , Phytochemistry, Traditional uses, Therapeutics Introduction Lantan camara introduced in India as an ornamental Scientific classification plant but entirely naturalized and found throughout Kingdom Plantae India. However, it is listed as one of the significant Order Lamiales medicinal plants of the world (Ross,1999).The plant Family Verbenacea Lantana camara (Verbanaceae), generally known as Genus Lantana wild or red sage is the most widespread species of this Species camara genus and it is a woody straggling plant with various flower colors, red, pink, white, yellow and violet Fig.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • MEDICINAL POTENTIAL of LANTANA CAMARA: VERBENACEAE Sunita Verma* Assistant Professor, Department of Botany, Rakesh P.G
    Verma Sunita Journal of Drug Delivery & Therapeutics. 2018; 8(4):62-64 Available online on 15.07.2018 at jddtonline.info Journal of Drug Delivery and Therapeutics Open Access to Pharmaceutical and Medical Research © 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non- commercial use, provided the original work is properly cited Open Access Review Article MEDICINAL POTENTIAL OF LANTANA CAMARA: VERBENACEAE Sunita Verma* Assistant Professor, Department of Botany, Rakesh P.G. College, Pilani, Rajasthan, India ABSTRACT Lantana camara is a shrub that belongs to the family of Verbanaceae. Lantana camara is one such notorious weed which is affecting ecosystem, and causing biodiversity loss at greater extent. It is highly invasive and currently occupies a large percentage of the vegetation cover wherever it was introduced. But, Lantana camara is well known to cure several diseases and used in various folk medicinal preparations. It used in many pharmacological activities. These studies established the therapeutic potential of Lantana camara in modern medicines and a possible candidate for the drug discovery. The present review aims to document the taxonomy, ecology, morphology and medicinal properties of L. camara. Keywords: Invasive, Ecology, Medicinal, Pharmacological, Weed. Article Info: Received 17 April, 2018; Review Completed 20 June 2018; Accepted 22 June 2018; Available online 15 July 2018 Cite this article as: Verma S, Medicinal potential of Lantana camara: verbenaceae, Journal of Drug Delivery and Therapeutics. 2018; 8(4):62-64 DOI: http://dx.doi.org/10.22270/jddt.v8i4.1771 *Address for Correspondence: Sunita Verma, Assistant Professor, Department of Botany, Rakesh P.G.
    [Show full text]
  • Viewed and Supported the Et Al
    Fourteenth Australian Weeds Conference What happens when a biocontrol agent attacks exotic but desired ornamentals? Philip E. Maher1, Brett J. Davis1, Michael D. Day2, A. Peter Mackey2, William A. Palmer2 and Elizabeth L. Snow2 1 Queensland Department of Natural Resources, Mines and Energy, GPO 2454, Brisbane, Queensland 4001, Australia 2 Alan Fletcher Research Station, Queensland Department of Natural Resources, Mines and Energy, PO Box 36, Sherwood, Queensland 4075, Australia Summary Signifi cant damage to non-target plant unpublished estimate of the total cost indicates it ex- species by a biological control agent could be in- ceeds $20 million annually (Department of Natural imical to the future of biocontrol, particularly if it Resources, Mines and Energy 2004). is associated with widespread community concern. Aconophora compressa (Walker) (Homoptera: When an agent attacks exotic non-target species that Membracidae) was the 27th insect species released are valued by some members of the community, then in Australia as a biocontrol agent for lantana. It is a the issues become clouded and diffi cult to address. sap-sucking bug imported from Mexico and was fi rst Aconophora compressa (Walker) was approved for released for the Queensland Department of Natural release as an agent for biocontrol of Lantana camara Resources, Mines and Energy (NRM and E) in 1995 L. in 1995, after 21 state and federal environmental by the Alan Fletcher Research Station (AFRS) (Palmer and agricultural agencies reviewed and supported the et al. 1996). The last release in Queensland was in submission. November 2001 at Helidon. Aconophora compressa established in the fi eld All quarantine protocols for the import, testing and since 1999, when A.
    [Show full text]