Molecular Regulation of Carotenoid Biosynthesis in Tomato Fruits. New Biotechnological Strategies Lucio D'andrea

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Regulation of Carotenoid Biosynthesis in Tomato Fruits. New Biotechnological Strategies Lucio D'andrea ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en molecular regulation of carotenoid biosynthesis in tomato fruit new biotechnological strategies Lucio D’Andrea 2016 Universitat Autónoma de Barcelona Facultat de Biociències Doctorat de Biologia i Biotecnologia Vegetal 2016 Molecular regulation of carotenoid biosynthesis in tomato fruits New biotechnological strategies Memoria presentada por Lucio D’Andrea para optar al título de doctor por la Universitat Autónoma de Barcelona Lucio D’Andrea Candidato a doctor Manuel Rodriguez-Concepción Briardo Llorente Director Co-director Joan Barceló Coll Tutor “Procuremos inventar pasiones nuevas, o reproducir las viejas con pareja intensidad” Del libro Rayuela de Julio Cortázar “Caminando en línea recta no puede uno llegar muy lejos” Del libro El Principito de Antoine de Saint-Exupéry. Esta tesis se la dedico A mi abuela Nelly y a mi madre. A la primera por las raíces y a la segunda por las alas. Table of contents Agradecimientos i Resumen iii Summary v Index of Figures vii Index of Tables xi Introduction 1 Section I: The tomato fruit 3 o Stages of tomato fruit development 4 . System I or Maturation 4 . System II or Ripening 5 o Metabolic changes during ripening 5 o The chloroplast to chromoplast transition 7 o Ethylene production and perception 9 o Transcriptional regulators of tomato ripening 10 Section II: Carotenoid biosynthesis 13 o The MEP pathway 14 o Carotenoid biosynthesis 17 . GGPP to phytoene: phytoene synthase (PSY) 17 . From phytoene to lycopene 19 . From lycopene to cyclic carotenes 20 . Biosynthesis of xanthophylls 21 Xanthophylls cycle enzymes 22 Neoxanthin synthase 22 o Biosynthesis of apocarotenids 23 Section III: Molecular regulation of carotenoid biosynthesis 24 o The coordination between the MEP pathway and carotenoid biosynthetic pathway 24 o Transcriptional regulation 26 . Developmental regulation 26 . Light signaling 28 o Post-transcriptional regulation 30 . Modulation of enzyme levels and activity 30 . Metabolite channeling of multi-enzyme complexes 32 Section IV: Economic and nutritional value of tomato fruit and Carotenoids 34 o Nutritional Quality 34 o Genetic engineering of carotenoid production in tomato fruit 36 Objectives 43 Results 45 Chapter I: A role for shade signaling on the regulation of carotenoid biosynthesis during tomato fruit ripening. 47 Background and rationale: light, PSY and carotenoids 49 The ripening-induced tomato PIF1a is a true PIF1 homologue 50 PIF1a represses PSY1 expression by binding to a PBE box in its promoter 55 Tomato fruit chlorophyll reduces the R/FR ratio of sunlight as it penetrates the fruit flesh 59 Fruit pigmentation-dependent changes in the R/FR ratio specifically influence PSY1 expression 61 Changes in the R/FR ratio of the light sensed in pericarp cells likely adjust carotenoid biosynthesis to the actual progress of ripening 64 Chapter II: A role for the Clp protease complex during tomato fruit ripening. 69 Background and rationale: the Clp protease complex in plants 71 Genes encoding Clp protease subunits are induced during tomato fruit ripening 74 Silencing of the tomato ClpR1 gene during fruit ripening affects carotenoid accumulation profile 78 Transgenic E8:amiR1 fruit show an orange color when ripe due to an enrichment in β-carotene, the main pro-vitamin A carotenoid 83 E8:amiR1 fruits do not fully differentiate typical chromplasts 89 Higher levels of DXS protein (but not transcripts) in transgenic amiR1 fruits are consistent with a reduction in Clp protease activity 91 Clp-defective amiR1 fruits have a similar chromoplast proteome to control fruits at the R stage 92 Clp protease-dependent protein turnover plays an important role during tomato fruit ripening. 95 The rate-limiting enzymes of the MEP and carotenoid pathways might be targets of the Clp protease in tomato fruit chromoplasts 103 Discussion 107 Section I: A role for shade signaling on the regulation of carotenoid biosynthesis during tomato fruit ripening. 109 . The self-shading model: recycling of a PIF-based mechanism to monitor tomato fruit ripening 109 . Carotenoids and seed-dispersion: an evolutionary perspective 112 Section II: A role for the Clp protease complex during tomato fruit ripening 114 A role for the Clp protease in carotenoid biosynthesis 114 A role for the Clp protease in chromoplast ultrastructure 119 Section III: All roads lead to Rome: PSY as a central regulator of carotenogenesis in tomato fruit. 122 Conclusions 125 Material and Methods 129 Plant material and growth conditions 131 o Plant material 131 o Plant growth conditions 132 Nucleic acids thechniques 133 o PCR. Cloning and colony screening 133 o Gateway cloning 133 . Virus induced gene silencing (VIGS) cloning 133 . Artifitial microRNA (amiRNA) cloning 134 o Bacteria transformation by heat shock 136 o Plasmidic DNA extraction 137 o Gel Purification 137 o RNA extraction 137 o cDNA synthesis 138 o Gene expression analysis 138 o Chromatin inmuno-precipitation (ChIP) coupled to qPCR 140 Protein techniques 141 o Protein extraction 141 o SDS-PAGE 141 o Western blot 142 . Densitometry 142 Metabolite techniques 143 o Plastidial Isoprenoids analysis by HPLC 143 Plant molecular biology techniques o Seed sterilization and sowing 143 o Plant transformation 143 . MicroTom (MT) stable transformation 144 . Transient transformation 144 o Selection of transgenic plant 145 . Genomic DNA extraction 146 . Genotyping PCR 146 o Cycloheximide (CHX) experiment 146 Microscopy and imaging 147 o Laser confocal microscopy 147 o Transmition electronic microscopy (TEM) 147 o Raman imaging 147 o Photography 148 Biophotonics 148 System biology techniques 148 o Plastid isolation 148 o Protein solubilization from isolated plastids 149 o Proteomic analysis. 149 . Sample preparation 149 . TMT labeling 149 . High pH reverse phase (hpRP) fractionation 150 . Nano-scale reverse phase chromatography and tandem mass spectrometry (nanoLC-MS/MS) 151 . Data processing, protein identification and data analysis 152 Statistical analysis 153 Bioinformatic Analysis 153 o Gene expression analysis from microarray and RNA-seq data 153 o MapMan 153 o Sequence aligment and phylogenetic trees 154 References 155 Annexes 181 Publications 195 Agradecimientos Probablemente esta sea la parte que más me costó escribir. No porque no supiese a quién agradecer, sino más bien porque es tanta la gente, que es muy probable que la memoria me juegue una mala pasada. Por tanto, prefiero asumir que será inevitable dicho olvido y agradecer a todas aquellas personas que formaron parte de mi vida durante estos cuatro años. Empiezo. Quiero agradecer: Al Ministerio de Educación, Cultura y Deporte del Gobierno de España por haberme concedido la beca de Formación de Personal Universitario y con ello la posibilidad de realizar esta tesis doctoral. A mi director, Manuel, porque esta tesis no habría sido posible sino fuese porque cuatro años atrás, cuando estaba a punto de dejar de intentarlo, me tendió su mano. Sin duda, uno de los momentos más gratos de mi vida fue leer aquel e-mail, diciendo que tendría mi segunda oportunidad para realizar la tesis doctoral. Agradecerle también por su dirección continua, por su predisposición, por el apoyo constante, por las discusiones científicas y, fundamentalmente, por enseñarme a pensar. Más aún, por la libertad y la confianza en el laboratorio. Y sobre todo, gracias por enseñarnos que es mejor ser líder que jefe. A mi co-director y amigo, Briardo. Me considero un afortunado, por haber tenido al mejor ejemplo de amor a la ciencia, tenacidad y perseverancia. Gracias por el apoyo, tanto personal como científico durante estos años. Gracias por enseñarme que cuando se persigue, se consigue. Pero de lo que más agradecido estoy es de haber podido aprender de vos todos estos años; sin dudas sos y serás uno de mis pilares fundadores en esto de ser científico. A la Dra Li, Li y al Dr. Theodore Thannhauser de la Universidad de Cornell, por haberme dado la oportunidad de conocer, no solo nuevas técnicas, sino también, nuevas maneras de hacer ciencia. A mi familia. Que cuando hace 6 años dije que me venía a Europa todo fueron palabras de aliento. Porque siempre me brindaron todo el apoyo para que mis proyectos se cumplan. A mis padres, mis hermanas, mis cuñados, y en especial, a mis sobrinos, Emilia, Tiago y Juani, que sus sonrisas han hecho que esos días no tan buenos sean maravillosos. Al 2.01 TODO. A los viejos, Águila, Jordi, David, Mike, Cata, Pablo, Esther; a los nuevos Neto, Vicky, Miguel, Sofía; y a las que estuvieron durante todos estos años Miriam y Rosa. Por las risas, por los llantos (pero sobre todo por las risas). Por todas las fú, por “las casas por la ventana”, “los i tenis” y los asados en Segur. Por aguantarme las locuras y dejarme aguantar las de todos ustedes. Sin dudas todo este tiempo ha hecho que seamos más que un laboratorio, una gran familia. Al personal investigador del CRAG. Especialmente a mis compañeros (algunos ya viejas glorias). Esos con los que hemos andado juntos algunos años. Agradecerle especialmente a Mariana, Pat, Luis, Walter, Elena, Norma, Pep, Sil, Chiqui y Carmen. A los servicios científicos y personal de administración del CRAG, por hacer todo lo posible para que las cosas nos sean fáciles y rápidas. Especialmente a Pilar, porque fueron varios años de luchar codo a codo, contra aún no tenemos muy claro qué; pero parece que le hemos ganado. A las troupes que me acogieron estos años en España.
Recommended publications
  • Plant-To-Plant Communication Triggered by Systemin Primes Anti
    www.nature.com/scientificreports OPEN Plant-to-plant communication triggered by systemin primes anti- herbivore resistance in tomato Received: 10 February 2017 Mariangela Coppola1, Pasquale Cascone2, Valentina Madonna1, Ilaria Di Lelio1, Francesco Accepted: 27 October 2017 Esposito1, Concetta Avitabile3, Alessandra Romanelli 4, Emilio Guerrieri 2, Alessia Vitiello1, Published: xx xx xxxx Francesco Pennacchio1, Rosa Rao1 & Giandomenico Corrado1 Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant- to-plant communication allows specifc neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were signifcantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream efects of this class of molecules to intraspecifc plant-to-plant communication.
    [Show full text]
  • Photosynthetic Pigments in Diatoms
    Mar. Drugs 2015, 13, 5847-5881; doi:10.3390/md13095847 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Photosynthetic Pigments in Diatoms Paulina Kuczynska 1, Malgorzata Jemiola-Rzeminska 1,2 and Kazimierz Strzalka 1,2,* 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland; E-Mails: [email protected] (P.K.); [email protected] (M.J.-R.) 2 Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-126-646-509; Fax: +48-126-646-902. Academic Editor: Véronique Martin-Jézéquel Received: 10 July 2015 / Accepted: 7 September 2015 / Published: 16 September 2015 Abstract: Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications.
    [Show full text]
  • Chapter 2 Molecular Plant Volatile Communication
    CHAPTER 2 MOLECULAR PLANT VOLATILE COMMUNICATION Jarmo K. Holopainen* and James D. Blande Department of Environmental Science, Kuopio, Campus, University of Eastern Finland, Kuopio, Finland *Corresponding Author: Jarmo K. Holopainen—Email: [email protected] Abstract: Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above‑ground plant self‑recognition is available. INTRODUCTION Plants are literally rooted to the ground and therefore unable to change location. Consequently, they are easy targets to organisms that wish to feed on them. Plants have evolved a vast array of defensive features that effectively reduce the number of their enemies.1 However, defences are rarely flawless, meaning that plants cannot Not for Distribution ©2012 Copyright Landes Bioscience and Springer.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,725,399 B2 Petrie Et Al
    USO09725399B2 (12) United States Patent (10) Patent No.: US 9,725,399 B2 Petrie et al. (45) Date of Patent: Aug. 8, 2017 (54) LPID COMPRISING LONG CHAN (51) Int. Cl. POLYUNSATURATED FATTY ACDS C07C 69/587 (2006.01) CIIB I/O (2006.01) (71) Applicants: Commonwealth Scientific and (Continued) Industrial Research Organisation, (52) U.S. Cl. Acton, Australian Capital Territory CPC .............. C07C 69/587 (2013.01); A23D 9/00 (AU): Nuseed Pty Ltd, Laverton North, (2013.01); A61K 36/31 (2013.01): CIIB I/10 Victoria (AU); Grains Research and (2013.01); A61 K 2.236/00 (2013.01) Development Corporation, Barton, (58) Field of Classification Search Australian Capital Territory (AU) CPC .......................... C12N 15/8247; CO7C 69/587 See application file for complete search history. (72) Inventors: James Robertson Petrie, Goulburn (AU); Surinder Pal Singh, Downer (56) References Cited (AU); Pushkar Shrestha, Lawson U.S. PATENT DOCUMENTS (AU); Jason Timothy McAllister, Portarlington (AU); Robert Charles De 4,399.216 A 8, 1983 Axel et al. Feyter, Monash (AU); Malcolm David 5,004,863. A 4, 1991 Umbeck Devine, Vernon (CA) (Continued) (73) Assignees: COMMONWEALTH SCIENTIFIC FOREIGN PATENT DOCUMENTS AND INDUSTRIAL RESEARCH AU 667939 1, 1994 ORGANISATION, Campbell (AU): AU 200059710 B2 12/2000 NUSEED PTY LTD, Laverton North (Continued) (AU); GRAINS RESEARCH AND DEVELOPMENT CORPORATION, Barton (AU) OTHER PUBLICATIONS Ruiz-Lopez, N. et al., “Metabolic engineering of the omega-3 long (*) Notice: Subject to any disclaimer, the term of this chain polyunsaturated fatty acid biosynthetic pathway into trans patent is extended or adjusted under 35 genic plants' Journal of Experimental botany, 2012, vol.
    [Show full text]
  • The Biosemiotics of Plant Communication
    The Biosemiotics of Plant Communication Günther Witzany Telos — Philosophische Praxis, Austria Abstract: This contribution demonstrates that the development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign-mediated interactions and are not simply an mechanical exchange of ‘information’, as that term has come to be understood (or misunderstood) in science. Rather, such interactions as I will be describing here involve the active coordination and organisation of a great variety of different behavioural patterns — all of which must be mediated by signs. Thus proposed, a biosemiotics of plant communication investigates com- munication processes both within and among the cells, tissues, and organs of plants as sign-mediated interactions which follow (1) combinatorial (syntactic), (2) context-sensitive (pragmatic) and (3) content-specific (semantic) levels of rules. As will be seen in the cases under investigation, the context of interactions in which a plant organism is interwoven determines the content arrangement of its response behaviour. And as exemplified by the multiply semiotic roles played by the plant hormone auxin that I will discuss below, this means that a molecule type of identical chemical structure may function in the instantiation of different meanings (semantics) that are determined by the different contexts (pragmatics) in which this sign is used. 1. Introduction iosemiotics investigates the use of signs within and between organ- isms. Such signs may be signals or symbols, and many of them are Bchemical molecules. In the highly developed eukaryotic kingdoms, the behavioural patterns of organisms may also serve as signs, as for example, the dances of bees.
    [Show full text]
  • Effects of Plant-Plant Airborne Interactions on Performance of Neighboring Plants Using Wild Types and Genetically Modified Lines of Arabidopsis Thaliana
    EFFECTS OF PLANT-PLANT AIRBORNE INTERACTIONS ON PERFORMANCE OF NEIGHBORING PLANTS USING WILD TYPES AND GENETICALLY MODIFIED LINES OF ARABIDOPSIS THALIANA Claire Thelen A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2020 Committee: Maria Gabriela Bidart, Advisor Heidi Appel Vipa Phuntumart ii ABSTRACT M. Gabriela Bidart, Advisor Understanding plant-plant communication further elucidates how plants interact with their environment, and how this communication can be manipulated for agricultural and ecological purposes. Part of understanding plant-plant communication is discovering the mechanisms behind plant-plant recognition, and whether plants can distinguish between genetically like and unlike neighbors. It has been previously shown that plants can “communicate” with neighboring plants through airborne volatile organic compounds (VOCs), which can act as signals related to different environmental stressors. This study focused on the interaction among different genotypes of the annual plant Arabidopsis thaliana. Specifically, a growth chamber experiment was performed to compare how different genotypes of neighboring plants impacted a focal plant’s fitness-related phenotypes and developmental stages. The focal plant genotype was wild type Col-0, and the neighboring genotypes included the wild type Landsberg (Ler-0), and the genetically modified (GM) genotypes: Etr1-1 and Jar1-1. These GM lines have a single point-mutation that impacts their ability to produce a particular VOC. This allows for the evaluation of a particular role that a VOC may have on plant-plant airborne communication. Plants were grown in separate pots to eliminate potential belowground interactions through the roots, and distantly positioned to avoid aboveground physical contact between plants.
    [Show full text]
  • Sexual and Genotypic Variation in Terpene Quantitative and Qualitative Profiles in the Dioecious Shrub Baccharis Salicifolia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UC Irvine UC Irvine Previously Published Works Title Sexual and genotypic variation in terpene quantitative and qualitative profiles in the dioecious shrub Baccharis salicifolia. Permalink https://escholarship.org/uc/item/52m1532z Journal Scientific reports, 9(1) ISSN 2045-2322 Authors Moreira, Xoaquín Abdala-Roberts, Luis Nell, Colleen S et al. Publication Date 2019-10-10 DOI 10.1038/s41598-019-51291-w License CC BY 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Sexual and genotypic variation in terpene quantitative and qualitative profles in the dioecious Received: 1 May 2019 Accepted: 28 September 2019 shrub Baccharis salicifolia Published: xx xx xxxx Xoaquín Moreira 1, Luis Abdala-Roberts2, Colleen S. Nell3, Carla Vázquez-González1, Jessica D. Pratt4, Ken Keefover-Ring 5 & Kailen A. Mooney4 Terpenoids are secondary metabolites produced in most plant tissues and are often considered toxic or repellent to plant enemies. Previous work has typically reported on intra-specifc variation in terpene profles, but the efects of plant sex, an important axis of genetic variation, have been less studied for chemical defences in general, and terpenes in particular. In a prior study, we found strong genetic variation (but not sexual dimorphism) in terpene amounts in leaves of the dioecious shrub Baccharis salicifolia. Here we build on these fndings and provide a more in-depth analysis of terpene chemistry on these same plants from an experiment consisting of a common garden with male (N = 19) and female (N = 20) genotypes sourced from a single population.
    [Show full text]
  • On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators
    On the biosynthesis and evolution of apocarotenoid plant growth regulators. Item Type Article Authors Wang, Jian You; Lin, Pei-Yu; Al-Babili, Salim Citation Wang, J. Y., Lin, P.-Y., & Al-Babili, S. (2020). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell & Developmental Biology. doi:10.1016/ j.semcdb.2020.07.007 Eprint version Post-print DOI 10.1016/j.semcdb.2020.07.007 Publisher Elsevier BV Journal Seminars in cell & developmental biology Rights NOTICE: this is the author’s version of a work that was accepted for publication in Seminars in cell & developmental biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Seminars in cell & developmental biology, [, , (2020-08-01)] DOI: 10.1016/j.semcdb.2020.07.007 . © 2020. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by- nc-nd/4.0/ Download date 27/09/2021 08:08:14 Link to Item http://hdl.handle.net/10754/664532 1 On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators 2 Jian You Wanga,1, Pei-Yu Lina,1 and Salim Al-Babilia,* 3 Affiliations: 4 a The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science 5 and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi 6 Arabia.
    [Show full text]
  • A Mutant Allele of Ζ-Carotene Isomerase (Z-ISO)
    Rodrigo et al. BMC Plant Biology (2019) 19:465 https://doi.org/10.1186/s12870-019-2078-2 RESEARCH ARTICLE Open Access A mutant allele of ζ-carotene isomerase (Z- ISO) is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis María J. Rodrigo1* , Joanna Lado1,2, Enriqueta Alós1, Berta Alquézar1,3, Orly Dery4, Joseph Hirschberg4 and Lorenzo Zacarías1 Abstract Background: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. ‘Pinalate’ is a spontaneous bud mutant, or somatic mutation, derived from sweet orange ‘Navelate’, characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. Results: To identify the molecular basis of ‘Pinalate’ yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. ‘Pinalate’ fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9′-tri-cis- and 9,9′-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in ‘Pinalate’; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9′-tri-cis- to 9,9′-di-cis-ζ-carotene, was significantly reduced both in ‘Pinalate’ fruit and leaf tissues.
    [Show full text]
  • Identification and Functional Characterization of Tissue-Specific
    International Journal of Molecular Sciences Article Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana 1, 1, 1, 1 Savitha Dhandapani y, Mi Jung Kim y, Hui Jun Chin y, Sing Hui Leong and In-Cheol Jang 1,2,* 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; [email protected] (S.D.); [email protected] (M.J.K.); [email protected] (H.J.C.); [email protected] (S.H.L.) 2 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore * Correspondence: [email protected] These authors contributed equally to this work. y Received: 8 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: In addition to the well-known diterpenoid steviol glycosides, Stevia rebaudiana (Stevia) produces many labdane-type diterpenoids and a wide range of mono- and sesquiterpenoids. However, biosynthesis of mono- and sesquiterpenoids in Stevia remains unknown. Here we analyzed the extracts of Stevia leaves, flowers, stems, and roots by Gas Chromatography–Mass Spectrometry and putatively identified a total of 69 volatile organic compounds, most of which were terpenoids with considerably varied quantities among the four tissues of Stevia. Using Stevia transcriptomes, we identified and functionally characterized five terpene synthases (TPSs) that produced major mono- and sesquiterpenoids in Stevia. Transcript levels of these Stevia TPSs and levels of corresponding terpenoids correlated well in Stevia tissues. Particularly, the root-specific SrTPS4 and SrTPS5 catalyzed the formation of γ-curcumene/zingiberene/β-sesquiphellandrene and α-longipinene/β-himachalene/himachalol as multifunctional sesqui-TPSs, respectively.
    [Show full text]
  • The Oleaginous Astaxanthin-Producing Alga
    Zhang et al. Biotechnol Biofuels (2021) 14:119 https://doi.org/10.1186/s13068-021-01969-z Biotechnology for Biofuels REVIEW Open Access The oleaginous astaxanthin-producing alga Chromochloris zofngiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis Yu Zhang, Ying Ye, Fan Bai and Jin Liu* Abstract The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefts and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofngiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofngiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofngiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofngiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways.
    [Show full text]
  • Engineering of the Plant Abscisic Acid Biosynthetic Pathway in Escherichia Coli
    Engineering of the Plant Abscisic Acid Biosynthetic Pathway in Escherichia coli by Dominic Ludovice A thesis submitted in conformity with the requirements for the degree of Master of Science Cell and Systems Biology University of Toronto © Copyright by Dominic Ludovice 2016 Engineering of the Plant Abscisic Acid Biosynthetic Pathway in Escherichia coli Dominic Ludovice Master of Science Cell and Systems Biology University of Toronto 2016 Abstract Abscisic acid (ABA) is a phytohormone involved in many aspects of plant growth and development, including the regulation of seed development, dormancy, germination, and plant responses to environmental stress. Escherichia coli is an ideal system in which to engineer the ABA biosynthetic pathway since the early steps have been successfully reproduced in E. coli by Misawa and colleagues (1990) using the carotenoid biosynthesis gene cassette from Pantoea ananatis. In this study, Arabidopsis thaliana genes were used to build the pathway starting from the precursor zeaxanthin. The next biosynthetic enzyme, zeaxanthin epoxidase (ZEP), was successfully expressed in E. coli, leading to the effective production of violaxanthin. However, the enzyme responsible for catalyzing the subsequent step has yet to be identified. This system is now being used to identify uncharacterized genes of the pathway. ii Acknowledgments First and foremost, I would like to thank my supervisor, Professor Eiji Nambara, without whom this project would not have been possible. I am grateful for the support and help he has given me throughout this project. I would also like to thank the current and former members of the Nambara Lab, who treated me like family. Our Post Doctoral Fellow, Dr.
    [Show full text]