Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant-To-Plant Communication Triggered by Systemin Primes Anti
www.nature.com/scientificreports OPEN Plant-to-plant communication triggered by systemin primes anti- herbivore resistance in tomato Received: 10 February 2017 Mariangela Coppola1, Pasquale Cascone2, Valentina Madonna1, Ilaria Di Lelio1, Francesco Accepted: 27 October 2017 Esposito1, Concetta Avitabile3, Alessandra Romanelli 4, Emilio Guerrieri 2, Alessia Vitiello1, Published: xx xx xxxx Francesco Pennacchio1, Rosa Rao1 & Giandomenico Corrado1 Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant- to-plant communication allows specifc neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were signifcantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream efects of this class of molecules to intraspecifc plant-to-plant communication. -
Chapter 2 Molecular Plant Volatile Communication
CHAPTER 2 MOLECULAR PLANT VOLATILE COMMUNICATION Jarmo K. Holopainen* and James D. Blande Department of Environmental Science, Kuopio, Campus, University of Eastern Finland, Kuopio, Finland *Corresponding Author: Jarmo K. Holopainen—Email: [email protected] Abstract: Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above‑ground plant self‑recognition is available. INTRODUCTION Plants are literally rooted to the ground and therefore unable to change location. Consequently, they are easy targets to organisms that wish to feed on them. Plants have evolved a vast array of defensive features that effectively reduce the number of their enemies.1 However, defences are rarely flawless, meaning that plants cannot Not for Distribution ©2012 Copyright Landes Bioscience and Springer. -
Sesquiterpenoids and Phenolics from Crepis Conyzifolia
Sesquiterpenoids and Phenolics from Crepis conyzifolia Wanda Kisiel* and Klaudia Michalska Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Pl-31-343 Krakow, Poland. Fax: +48 126374500. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 961-964 (2001); received July 30/August 28, 2001 Crepis conyzifolia, Sesquiterpenoids, Phenolics From the roots of Crepis conyzifolia, two new and two known guaianolides were isolated together with three known phenylpropanoids. Structures of the new compounds were estab lished as 8ß-hydroxy-4ß, 15-dihydrozaluzanin C and 4ß, 15, llß, 13-tetrahydrozaluzanin C-3- O-ß-glucopyranoside by spectral methods. The identity of 8 -epiisolippidiol and dentalactone was also discussed. Introduction previously isolated from Crepis and Lactuca spe cies in our laboratory (Kisiel, 1983; Kisiel and Screening tests for potential anticancer agents Barszcz, 1995; Kisiel and Barszcz, 1997; Kisiel et from natural sources showed that crude alcoholic al., 2000). The identity of cichoriin (7) was estab extracts from plants belonging to the tribe Lactu- lished by comparison of its spectral data with those ceae of the Asteraceae exhibited chemoprotective in the literature (Kuwajima et al., 1992). The com effects on chemical carcinogenesis and differentia pound is reported for the first time from Crepis tion-inducing activities on human leukemia and species. Since no complete XH NMR data are mause melanoma cell lines. Some bioactive triter- available for 4 (Kisiel, 1983), we have included all pene and sesquiterpene lactone constituents of the our assignments in Table I, along with unreported plant extracts were isolated and identified (Taka- 13C NMR data in CDC13 and pyridine-d5. -
The Biosemiotics of Plant Communication
The Biosemiotics of Plant Communication Günther Witzany Telos — Philosophische Praxis, Austria Abstract: This contribution demonstrates that the development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign-mediated interactions and are not simply an mechanical exchange of ‘information’, as that term has come to be understood (or misunderstood) in science. Rather, such interactions as I will be describing here involve the active coordination and organisation of a great variety of different behavioural patterns — all of which must be mediated by signs. Thus proposed, a biosemiotics of plant communication investigates com- munication processes both within and among the cells, tissues, and organs of plants as sign-mediated interactions which follow (1) combinatorial (syntactic), (2) context-sensitive (pragmatic) and (3) content-specific (semantic) levels of rules. As will be seen in the cases under investigation, the context of interactions in which a plant organism is interwoven determines the content arrangement of its response behaviour. And as exemplified by the multiply semiotic roles played by the plant hormone auxin that I will discuss below, this means that a molecule type of identical chemical structure may function in the instantiation of different meanings (semantics) that are determined by the different contexts (pragmatics) in which this sign is used. 1. Introduction iosemiotics investigates the use of signs within and between organ- isms. Such signs may be signals or symbols, and many of them are Bchemical molecules. In the highly developed eukaryotic kingdoms, the behavioural patterns of organisms may also serve as signs, as for example, the dances of bees. -
Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia That Depends on Early Activation of the Camp Pathway
The Journal of Neuroscience, July 1, 2002, 22(13):5687–5693 Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia that Depends on Early Activation of the cAMP Pathway K. A. Sluka Graduate Program in Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa 52242 Pain and hyperalgesia from deep somatic tissue (i.e., muscle tissue was reversed by spinal blockade of adenylate cyclase or and joint) are processed differently from that from skin. This protein kinase A (PKA). Interestingly, mechanical allodynia was study examined differences between deep and cutaneous tis- reversed if adenylate cyclase or PKA inhibitors were adminis- sue allodynia and the role of cAMP in associated behavioral tered spinally 24 hr, but not 1 week, after injection of capsaicin. changes. Capsaicin was injected into the plantar aspect of the Spinally administered 8-bromo-cAMP resulted in a similar pat- skin, plantar muscles of the paw, or ankle joint, and responses tern, with heat hypoalgesia and mechanical allodynia occurring to mechanical and heat stimuli were assessed until allodynia simultaneously. Thus, injection of capsaicin into deep tissues resolved. Capsaicin injected into skin resulted in a secondary results in a longer-lasting mechanical allodynia and heat hy- mechanical allodynia and heat hypoalgesia lasting ϳ3hr.In poalgesia compared with injection of capsaicin into skin. The contrast, capsaicin injection into muscle or joint resulted in a mechanical allodynia depends on early activation of the cAMP long-lasting bilateral (1–4 weeks) mechanical allodynia with a pathway during the first 24 hr but is independent of the cAMP simultaneous unilateral heat hypoalgesia. -
Effects of Plant-Plant Airborne Interactions on Performance of Neighboring Plants Using Wild Types and Genetically Modified Lines of Arabidopsis Thaliana
EFFECTS OF PLANT-PLANT AIRBORNE INTERACTIONS ON PERFORMANCE OF NEIGHBORING PLANTS USING WILD TYPES AND GENETICALLY MODIFIED LINES OF ARABIDOPSIS THALIANA Claire Thelen A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2020 Committee: Maria Gabriela Bidart, Advisor Heidi Appel Vipa Phuntumart ii ABSTRACT M. Gabriela Bidart, Advisor Understanding plant-plant communication further elucidates how plants interact with their environment, and how this communication can be manipulated for agricultural and ecological purposes. Part of understanding plant-plant communication is discovering the mechanisms behind plant-plant recognition, and whether plants can distinguish between genetically like and unlike neighbors. It has been previously shown that plants can “communicate” with neighboring plants through airborne volatile organic compounds (VOCs), which can act as signals related to different environmental stressors. This study focused on the interaction among different genotypes of the annual plant Arabidopsis thaliana. Specifically, a growth chamber experiment was performed to compare how different genotypes of neighboring plants impacted a focal plant’s fitness-related phenotypes and developmental stages. The focal plant genotype was wild type Col-0, and the neighboring genotypes included the wild type Landsberg (Ler-0), and the genetically modified (GM) genotypes: Etr1-1 and Jar1-1. These GM lines have a single point-mutation that impacts their ability to produce a particular VOC. This allows for the evaluation of a particular role that a VOC may have on plant-plant airborne communication. Plants were grown in separate pots to eliminate potential belowground interactions through the roots, and distantly positioned to avoid aboveground physical contact between plants. -
Sexual and Genotypic Variation in Terpene Quantitative and Qualitative Profiles in the Dioecious Shrub Baccharis Salicifolia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UC Irvine UC Irvine Previously Published Works Title Sexual and genotypic variation in terpene quantitative and qualitative profiles in the dioecious shrub Baccharis salicifolia. Permalink https://escholarship.org/uc/item/52m1532z Journal Scientific reports, 9(1) ISSN 2045-2322 Authors Moreira, Xoaquín Abdala-Roberts, Luis Nell, Colleen S et al. Publication Date 2019-10-10 DOI 10.1038/s41598-019-51291-w License CC BY 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Sexual and genotypic variation in terpene quantitative and qualitative profles in the dioecious Received: 1 May 2019 Accepted: 28 September 2019 shrub Baccharis salicifolia Published: xx xx xxxx Xoaquín Moreira 1, Luis Abdala-Roberts2, Colleen S. Nell3, Carla Vázquez-González1, Jessica D. Pratt4, Ken Keefover-Ring 5 & Kailen A. Mooney4 Terpenoids are secondary metabolites produced in most plant tissues and are often considered toxic or repellent to plant enemies. Previous work has typically reported on intra-specifc variation in terpene profles, but the efects of plant sex, an important axis of genetic variation, have been less studied for chemical defences in general, and terpenes in particular. In a prior study, we found strong genetic variation (but not sexual dimorphism) in terpene amounts in leaves of the dioecious shrub Baccharis salicifolia. Here we build on these fndings and provide a more in-depth analysis of terpene chemistry on these same plants from an experiment consisting of a common garden with male (N = 19) and female (N = 20) genotypes sourced from a single population. -
Sesquiterpene Glycosides from the Roots of Codonopsis Pilosula
Acta Pharmaceutica Sinica B 2016;6(1):46–54 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Sesquiterpene glycosides from the roots of Codonopsis pilosula Yueping Jianga,b, Yufeng Liua, Qinglan Guoa, Chengbo Xua, Chenggen Zhua, Jiangong Shia,n aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China bDepartment of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China Received 6 August 2015; received in revised form 10 September 2015; accepted 14 September 2015 KEYWORDS Abstract Three new sesquiterpene glycosides, named codonopsesquilosides AÀC(1À3), were isolated from an aqueous extract of the dried roots of Codonopsis pilosula. Their structures including absolute Codonopsis pilosula; fi Campanulaceae; con gurations were determined by spectroscopic and chemical methods. These glycosides are categorized Sesquiterpene glycoside; as C15 carotenoid (1), gymnomitrane (2), and eudesmane (3) types of sesquiterpenoids, respectively. Codonopsesquilosides Compound 1 is the first diglycoside of C15 carotenoids to be reported. Compound 2 represents the second AÀC; reported example of gymnomitrane-type sesquiterpenoids from higher plants. The absolute configurations C15 carotenoid; were supported by comparison of the experimental circular dichroism (CD) spectra with the calculated Gymnomitrane; electronic CD (ECD) spectra of 1À3, their aglycones, and model compounds based on quantum- Eudesmane mechanical time-dependent density functional theory. The influences of the glycosyls on the calculated ECD spectra of the glycosidic sesquiterpenoids, as well as some nomenclature and descriptive problems with gymnomitrane-type sesquiterpenoids are discussed. -
Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks
processes Article Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks Waldeyr M. C. da Silva 1,2,3,∗ , Jakob L. Andersen 4 , Maristela T. Holanda 5 , Maria Emília M. T. Walter 3 , Marcelo M. Brigido 2 , Peter F. Stadler 5,6,7,8,9 and Christoph Flamm 7 1 Federal Institute of Goiás, Rua 64, esq. c/ Rua 11, s/n, Expansão Parque Lago, Formosa, GO 73813-816, Brazil 2 Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] 3 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; [email protected] 4 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; [email protected] 5 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] (M.T.H.); [email protected] (P.F.S.) 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions Dresden-Leipzig, and Leipzig Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 7 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; [email protected] 8 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA * Correspondence: [email protected]; Tel.: +55-61-99671-6025 Received: 28 February 2019; Accepted: 11 April 2019; Published: 25 April 2019 Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response to herbivores and the interaction with other plants. -
On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators
On the biosynthesis and evolution of apocarotenoid plant growth regulators. Item Type Article Authors Wang, Jian You; Lin, Pei-Yu; Al-Babili, Salim Citation Wang, J. Y., Lin, P.-Y., & Al-Babili, S. (2020). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell & Developmental Biology. doi:10.1016/ j.semcdb.2020.07.007 Eprint version Post-print DOI 10.1016/j.semcdb.2020.07.007 Publisher Elsevier BV Journal Seminars in cell & developmental biology Rights NOTICE: this is the author’s version of a work that was accepted for publication in Seminars in cell & developmental biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Seminars in cell & developmental biology, [, , (2020-08-01)] DOI: 10.1016/j.semcdb.2020.07.007 . © 2020. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by- nc-nd/4.0/ Download date 27/09/2021 08:08:14 Link to Item http://hdl.handle.net/10754/664532 1 On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators 2 Jian You Wanga,1, Pei-Yu Lina,1 and Salim Al-Babilia,* 3 Affiliations: 4 a The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science 5 and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi 6 Arabia. -
Molecular Regulation of Carotenoid Biosynthesis in Tomato Fruits. New Biotechnological Strategies Lucio D'andrea
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en molecular regulation of carotenoid biosynthesis in tomato fruit new biotechnological strategies Lucio D’Andrea 2016 Universitat Autónoma de Barcelona Facultat de Biociències Doctorat de Biologia i Biotecnologia Vegetal 2016 Molecular regulation of carotenoid biosynthesis in tomato fruits New biotechnological strategies Memoria presentada por Lucio D’Andrea para optar al título de doctor por la Universitat Autónoma de Barcelona Lucio D’Andrea Candidato a doctor Manuel Rodriguez-Concepción Briardo Llorente Director Co-director Joan Barceló Coll Tutor “Procuremos inventar pasiones nuevas, o reproducir las viejas con pareja intensidad” Del libro Rayuela de Julio Cortázar “Caminando en línea recta no puede uno llegar muy lejos” Del libro El Principito de Antoine de Saint-Exupéry. Esta tesis se la dedico A mi abuela Nelly y a mi madre. A la primera por las raíces y a la segunda por las alas. Table of contents Agradecimientos i Resumen iii Summary v Index of Figures vii Index of Tables xi Introduction 1 Section I: The tomato fruit 3 o Stages of tomato fruit development 4 . -
Identification and Functional Characterization of Tissue-Specific
International Journal of Molecular Sciences Article Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana 1, 1, 1, 1 Savitha Dhandapani y, Mi Jung Kim y, Hui Jun Chin y, Sing Hui Leong and In-Cheol Jang 1,2,* 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; [email protected] (S.D.); [email protected] (M.J.K.); [email protected] (H.J.C.); [email protected] (S.H.L.) 2 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore * Correspondence: [email protected] These authors contributed equally to this work. y Received: 8 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: In addition to the well-known diterpenoid steviol glycosides, Stevia rebaudiana (Stevia) produces many labdane-type diterpenoids and a wide range of mono- and sesquiterpenoids. However, biosynthesis of mono- and sesquiterpenoids in Stevia remains unknown. Here we analyzed the extracts of Stevia leaves, flowers, stems, and roots by Gas Chromatography–Mass Spectrometry and putatively identified a total of 69 volatile organic compounds, most of which were terpenoids with considerably varied quantities among the four tissues of Stevia. Using Stevia transcriptomes, we identified and functionally characterized five terpene synthases (TPSs) that produced major mono- and sesquiterpenoids in Stevia. Transcript levels of these Stevia TPSs and levels of corresponding terpenoids correlated well in Stevia tissues. Particularly, the root-specific SrTPS4 and SrTPS5 catalyzed the formation of γ-curcumene/zingiberene/β-sesquiphellandrene and α-longipinene/β-himachalene/himachalol as multifunctional sesqui-TPSs, respectively.