SHORT COMMUNICATION Rapid Visual Assessment of Fish

Total Page:16

File Type:pdf, Size:1020Kb

SHORT COMMUNICATION Rapid Visual Assessment of Fish Western Indian Ocean J. Mar. Sci. Vol. 9, No. 1, pp. 115 - 134, 2010 © 2010 WIOMSA SHORT COMMUNICATION Rapid Visual Assessment of Fish Communities on Selected Reefs in the Bazaruto Archipelago Jade Q. Maggs1, Camilla Floros1, Marcos A.M. Pereira2 and Michael H. Schleyer1 1Oceanographic Research Institute, P.O. Box 10712, Marine Parade, 4056 South Africa; 2Associação para Investigação Costeira e Marinha (AICM), P.O. Box 2046, Maputo, Mozambique. Keywords: Bazaruto Archipelago, Mozambique, ichthyofauna, fish surveys, underwater visual census, coral reefs. Abstract— Rapid visual censuses were conducted of fish on eight coral reefs in the Bazaruto Archipelago, Mozambique, in 2007. SCUBA and snorkelling were used for the censuses in depths between 1-20 m, yielding an inventory of 249 fish species belonging to 50 families. This is intended to serve as a baseline for more detailed studies and monitoring programmes in the future. Although fewer species were recorded relative to other studies conducted in the Western Indian Ocean, the trophic structure on Bazaruto’s reefs proved typical for the region, indicating a relative measure of reef health. However, other regional studies were not directly comparable, differing in habitat, duration of sampling effort and methodology. This highlighted the need for a long-term monitoring programme specifically adapted for the Bazaruto reef types to provide a basis for their sound management and conservation. INTRODUCTION Mozambique in the Western Indian Ocean (WIO). The seas around the The Bazaruto Archipelago consists archipelago are rich in marine life of five islands and is located and provide an important source approximately 20 km off the coast of of protein to the local community Corresponding Author: JQM E-mail: [email protected] 116 J. Q. MAGGS ET AL. (Everett et al., 2008; Reina, 1998). beach seines, gamboa traps and The ecological importance of the spearguns. Mozambican citizens living archipelago first received attention outside the BANP are only allowed in 1971 with three of the islands, to use handlines inside the park and Benguera, Magaruque and Bangue, are allowed to use beach-seines in a receiving national park status (area of small area south of Magaruque. Gill- protection ~600 km2); Bazaruto and netting is prohibited and no industrial Santa Carolina were only designated or semi-industrial fishing operations as ‘special surveillance zones’ (Reina, are allowed in the BANP. The no-take 1998). After many years, the Bazaruto zones are Two-mile Reef, Lighthouse Archipelago National Park (BANP) Reef, Santa Carolina and small rocky was proclaimed in 2001, protecting all outcrops on the inside and outside of five islands. The BANP was extended Bazaruto Island (Fig. 1). However, in 2003 to include the Cabo de São only Two-mile Reef, Lighthouse Sebastião peninsula in the south and Reef and Santa Carolina enjoy strong now covers 1430 km2. Mozambique’s compliance. There are no seasonal Ministry of Tourism is responsible for restrictions on fishing in the BANP management of the BANP. and recreational SCUBA diving and The coral and rocky reefs in the snorkelling is allowed in the no-take archipelago provide habitat for a zones. A new management plan is wealth of biodiversity, making it a being developed for the Park but, at popular tourist destination (Schleyer the time of writing, had not yet been & Celliers 2005). Visiting SCUBA implemented. divers and recreational anglers bring The livelihoods of the local in valuable revenue to the area and, communities depend, to a great extent, although fishing is allowed in the on marine and coastal resources BANP, it is regulated by means (Everett et al., 2008). An increasing of permits and no-take zones. All population characterises many coastal recreational fishing requires a permit communities in the WIO, placing and is mostly boat-based, emanating pressure on such resources (Lindén from a number of resorts scattered et al., 2002). Effective management through the islands. A number of is thus required, the success of which seasonal fishing competitions are depends on monitoring programmes hosted by the various resorts, bringing (Obura et al., 2002). These have been in foreign anglers. seen as a priority in the WIO region The artisanal fishery is the main since the 1998 mass coral bleaching economic activity for more than 70% event (Lindén et al., 2002). Monitoring of the local population (Everett et al., of a resource depends on a thorough 2008). Artisanal fishermen harvest knowledge of the biodiversity of an fish using dhows, pirogues, approved area. Species inventories comprise RAPID VISUAL ASSESSMENT OF FISH COMMUNITIES ON SELECTED BAZARUTO REEFS 117 a fundamental baseline in this MATERIALS AND METHODS regard, providing a foundation for an understanding of ecological processes Study Area and the effects of biodiversity loss The Bazaruto Archipelago is a chain on ecosystem function (Bellwood & of four islands, Bazaruto, Benguera, Hughes 2001; Gillibrand et al., 2007). Magaruque and Bangue, with a fifth Baseline fish community data are island, Santa Carolina, lying on the sparse for the WIO region but those inside of the island chain (Fig. 1). published include fish inventories for The reefs around the archipelago are the Glorieuses Islands (Durville et diverse and include rocky patch reefs, al., 2003), Mayotte (Chabanet, 2002), rocky massifs, fringing and barrier Andavadoaka (Gillibrand et al., 2007), coral reefs and deeply submerged Juan De Nova (Chabanet & Durville coral reefs (Schleyer & Maggs 2008). 2005), Tuléar (Harmelin-Vivien, The fish community assessment was 1979) Geyser and Zéléé (Chabanet et undertaken on all these reef types in al., 2002), Réunion (Chabanet, 1994), depths from 1-20 m. A range of reef Sodwana Bay (Chater et al., 1993; habitats within these reef types was 1995) and Bassas da India (van der sampled with varying coral cover and Elst & Chater 2001). topographic complexity. Pereira (2000) prepared a general Twelve-mile Reef is a submerged checklist of reef-associated fishes for sandstone coral reef roughly twelve Mozambique, Benayahu & Schleyer nautical miles (18 km) north of (1996) and Schleyer & Celliers (2005) Bazaruto’s northern point in the compiled coral inventories for the open sea. It is open to fishing and Bazaruto reefs, Motta et al., (2002) and SCUBA diving but is relatively Rodrigues et al., (2000) quantified fish inaccessible for artisanal fisherman communities at two sites off Bazaruto using traditional pirogues and dhows. and van der Elst & Afonso (2008) However, recreational fishers and compiled a fish inventory based on SCUBA divers, using large boats with work undertaken at Bazaruto in the outboard engines, are able to access late 1980s. However, there appears this reef. Relative to the other reefs to have been no further ichthyofaunal sampled in this study, Twelve-mile research in the Bazaruto Archipelago. Reef lies furthest from the waters This paper, therefore, presents a recent enclosed between the islands and the and more comprehensive inventory mainland. The reef was sampled at of the fish community as a precursor depths between 15-20 m. to further ecological studies on the Tubarão, Garoupa and Kingfish Bazaruto reefs and highlights the need Reefs are sedimented rocky patch for long-term monitoring. reefs which are open to fishing and 118 J. Q. MAGGS ET AL. Fig. 1. Map of the Bazaruto Archipelago, Mozambique. Study sites are indicated by (♦). RAPID VISUAL ASSESSMENT OF FISH COMMUNITIES ON SELECTED BAZARUTO REEFS 119 SCUBA diving. Garoupa lies nine km Data Collection north of Bazaruto and was sampled at Two fish surveys were conducted, one 16-20 m. Tubarão lies 19 km north- in February 2007 and one in November east of Inhassoro and was sampled 2007. Surveys were undertaken in the at 13-18 m. Kingfish Reef is 13.5 km late morning on a low to outgoing east of Inhassoro and was sampled at spring tide. Fish communities 6-11 m. High turbidity is common on were sampled on the reefs using an these reefs. underwater visual census technique Lighthouse Reef is a fringing coral adapted from Samoilys (1997) in reef located on the north-eastern tip of which three divers recorded the Bazaruto. It is a no-take zone and is presence of fish species on slates. closed to fishing (including artisanal A combination of diving methods fishing) but open to SCUBA diving was used with SCUBA being used and snorkelling. Only the inner lagoon for deeper locations and snorkelling was sampled and the depth ranged for shallow inner lagoons. Divers between 1-3 m. conducted a 45 minute timed swim Two-mile Reef is a barrier coral following a random path. Although reef which lies four kilometres the underwater visual census method out to sea between Bazaruto and is known to underestimate small and Benguera Islands. This reef is also a cryptic species, it was employed no-take zone being closed to fishing because it provides a means of (including artisanal fishing). Although sampling the fish community with little fishing is prohibited, Two-mile Reef disturbance (Fowler, 1987; Harmelin- is subjected to diver pressure and Vivien et al., 1985). Identification of anchor damage from visiting small species was confirmed after sampling craft, recreational dive operators and using appropriate reference books tourists. All reef habitats at Two-mile (King, 1996; King & Fraser 2001; Reef were sampled at depths between Lieske & Myers 1999; Smith & 1-18 m. Heemstra 1986). Amphitheatre and Camel’s Hump are submerged rocky massifs located Trophic Categorisation two kilometres seaward of Cabo de Fish species were assigned to one São Sebastião. They are open to fishing of ten trophic categories based on and SCUBA diving but turbidity classifications by Harmelin-Vivien is high on these reefs. Sampling at (1979); Hiatt & Strasberg (1960); Camel’s Hump ranged between 13- Hobson (1974) and Myers (1999) 16 m in depth and at Amphitheatre, as cited by Chabanet & Durville between 14-19 m.
Recommended publications
  • The Evolutionary Enigma of the Pygmy Angelfishes from the Centropyge
    1 1 Original Article 2 After continents divide: comparative phylogeography of reef fishes from the Red 3 Sea and Indian Ocean 4 Joseph D. DiBattista1*, Michael L. Berumen2,3, Michelle R. Gaither4, Luiz A. 5 Rocha4, Jeff A. Eble5, J. Howard Choat6, Matthew T. Craig7, Derek J. Skillings1 6 and Brian W. Bowen1 7 1Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI 96744, USA, 2Red Sea 8 Research Center, King Abdullah University of Science and Technology, Thuwal, 9 Saudi Arabia, 3 Biology Department, Woods Hole Oceanographic Institution, 10 Woods Hole, MA 02543 USA, 4Section of Ichthyology, California Academy of 11 Sciences, San Francisco, CA 94118, USA, 5Department of Biology, University of 12 West Florida, Pensacola, FL 32514, USA, 6School of Marine and Tropical 13 Biology, James Cook University, Townsville, QLD 4811, Australia, 7Department 14 of Marine Sciences and Environmental Studies, University of San Diego, San 15 Diego, CA 92110, USA 16 17 *Correspondence: Joseph D. DiBattista, Hawai‘i Institute of Marine Biology, P.O. 18 Box 1346, Kāne‘ohe, HI 96744, USA. 19 E-mail: [email protected] 2 20 Running header: Phylogeography of Red Sea reef fishes 21 22 23 24 25 26 27 28 29 30 31 32 ABSTRACT 33 Aim The Red Sea is a biodiversity hotspot characterized by unique marine fauna 34 and high endemism. This sea began forming approximately 24 million years ago 35 with the separation of the African and Arabian plates, and has been characterized 36 by periods of desiccation, hypersalinity and intermittent connection to the Indian 3 37 Ocean. We aim to evaluate the impact of these events on the genetic architecture 38 of the Red Sea reef fish fauna.
    [Show full text]
  • Contrasting Patterns in the Abundance of Fish Communities Targeted by Fishers on Two Coral Reefs in Southern Mozambique
    1 African Journal Of Marine Science Archimer January 2020, Volume 42 Issue 1 Pages 95-107 https://doi.org/10.2989/1814232X.2020.1731597 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00657/76941/ Contrasting patterns in the abundance of fish communities targeted by fishers on two coral reefs in southern Mozambique Sancelme Tonin 1, 2, 3 , Goetze J 2, 4, 5, Jaquemet S, Meekan Mg 1, 2, Flam A 6, Watts Am 6, 7, Speed Cw 1, 2 1 Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Australia 2 Global FinPrint Project, The University of Western Australia, Crawley, Australia 3 Université de La Réunion, UMR 9220 ENTROPIE [Tropical Marine Ecology Laboratory], Institute of Research for Development (IRD)/French National Centre for Scientific Research (CNRS), Saint Denis, Réunion 4 Department of Environment and Agriculture, Curtin University, Bentley, Australia 5 Marine Program, Wildlife Conservation Society, Bronx, New York, USA 6 Marine Megafauna Foundation, Marine Megafauna Research Center, Tofo Beach, Inhambane, Mozambique 7 Manchester Metropolitan University, Manchester, United Kingdom * Corresponding author : Tonin Sancelme, email address : [email protected] Abstract : Coastal populations of maritime countries in eastern Africa rely on fish as a primary source of protein, but baseline information on the abundance of fish communities on these coastlines is often lacking. We used baited remote underwater video stations to compare the abundance and diversity of reef fishes targeted by fishing at two sites in southern Mozambique, one at Lighthouse Reef within the Bazaruto Archipelago National Park and the other to the south at San Sebastian Reef on the San Sebastian Peninsula.
    [Show full text]
  • Skoglund 2014 MPA Fish Communities
    Effects of different marine protection levels on fish communities in tropical seagrass beds and coral reefs Stefan Skoglund Main supervisor: Martin Gullström Co-supervisors: Johan Eklöf, Narriman Jiddawi Department of Ecology, Environment and Botany Master’s Degree Thesis, 60 hp Marine Ecology 2014 Master’s programme in Biology (120 hp) Ht 2013-Vt 2014 ABSTRACT Overexploitation and degradation of key habitats such as seagrass meadows and coral reefs undermines the fish communities and fisheries production in tropical regions. A common way to preserve and manage ecosystem functions is to establish marine protected areas (MPAs). The protection strategies vary, but few studies have evaluated the effect of different reserve types in different habitats on fish community composition. In this study, a range of fish community variables (species richness, total biomass, mean individual fish weight and Rao’s functional diversity index) were measured and compared in two different reserve types and at two different management levels, both in shallow seagrass beds and coral reefs. The survey was made in six MPAs in Tanzania and Mozambique using visual census technique. The effect of reserve type was strong in coral reefs. No-take areas (NTAs) had higher species richness, mean individual fish weight and total biomass compared with conservation areas (CAs) and open access areas (OAAs). Furthermore, the total biomass and number of fish species were higher in private managed NTAs than in areas managed by the government. Moreover, NTAs seem to work as sanctuaries for the target fish families Acanthuridae and Scaridae, which showed higher biomasses inside NTAs compared to CAs and OAAs.
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • The Effects of Marine Parks and Fishing on Coral Reefs of Northern Tanzania
    Biological Conservation 89 (1999) 161±182 The eects of marine parks and ®shing on coral reefs of northern Tanzania T.R. McClanahan a,*, N.A. Muthiga b, A.T. Kamukuru c, H. Machano d, R.W. Kiambo a aThe Wildlife Conservation Society, Coral Reef Conservation Project, PO Box 99470, Mombasa, Kenya bKenya Wildlife Service, PO Box 82144, Mombasa, Kenya cKunduchi Fisheries Institute, PO Box 60091, Dar es Salaam, Tanzania dZanzibar Department of Environment, PO Box 811, Zanzibar, Tanzania Received 20 February 1998; received in revised form 7 September 1998; accepted 14 October 1998 Abstract The macrobenthic (coral, algae, and sea urchins) and ®sh communities in 15 back-reef sites on the patch and rock-island reefs of southern Kenya and northern Tanzania (250 km of coastline) were studied in order to (1) test an over®shing model developed in Kenya's fringing reef (McClanahan, 1995a, A coral reef ecosystem-®sheries model: impacts of ®shing intensity and catch selection on reef structure and processes. Ecol. Model. 80, 1±19.), (2) develop a baseline of information on Tanzanian coral reef ecosystems, and (3) determine if some of the government gazetted but unprotected marine reserves were still deserving of protective manage- ment. The over®shing model was tested by comparing ®ve sites in two fully protected reefsÐone in southern Kenya (Kisite Marine National Park) and the other in Zanzibar (Chumbe Island Coral Park)Ðwith 10 sites in eight ®shed reefs, and by comparing coral surveys conducted in reefs o of Dar es Salaam in 1974 with present-day studies. These comparisons suggest that ®shing is pri- marily reducing the abundance of angel®sh, butter¯y®sh, parrot®sh, scavengers, surgeon®sh, and trigger®sh groups while some species of small-bodied damsel®sh and wrasse appear to have bene®ted.
    [Show full text]
  • DNA Barcoding of Commercially Important Reef Fishes in Weh Island, Aceh, Indonesia
    DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia Nur Fadli1,*, Siti Azizah Mohd Nor2,3,*, Ahmad Sofiman Othman3, Hizir Sofyan4 and Zainal A. Muchlisin1 1 Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Aceh, Indonesia 2 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia 3 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 4 Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh, Aceh, Indonesia * These authors contributed equally to this work. ABSTRACT Knowledge on the precise identification of fish resources is critical for sustainable fisheries management. This study employs the DNA barcoding approach to generate a molecular taxonomic catalogue of commercially important reef fishes in the waters of Weh Island (Aceh Province), the most northerly inhabited island in the biodiverse Indonesian Archipelago. The waters not only support artisanal fisheries but also a feeder for the industry in the greater island of Aceh. In total, 230 specimens from 72 species belonging to 32 genera and 17 families were DNA barcoded, representing a major segment of the captured reef fish taxa and a quarter of fish species diversity that had previously been recorded. The sequence read lengths were 639 bp revealing 359 conserved sites, 280 variable sites, 269 parsimony informative and 11 singletons. Our molecular findings paralleled the morphological identification with no evidence of cryptic species or new species discovery. This study is a significant contribution to the fisheries statistics of this area, which would facilitate assessment of species catch composition and hence for strategizing management plans. It is an important input to Submitted 6 August 2019 the DNA barcode library of Indonesian marine fishes and to the global DNA barcode Accepted 9 July 2020 entries in general.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Fish Diversity and Coral Health of Tanzania's Reefs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by World Learning SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2016 Fish Diversity and Coral Health of Tanzania's Reefs: A comparative study between the Ushongo Village Reef and the Fungu Zinga Reef over time Della Turque SIT Study Abroad Corinne Casper SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the African Studies Commons, Aquaculture and Fisheries Commons, Biodiversity Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Environmental Studies Commons, Marine Biology Commons, Oceanography Commons, Sustainability Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Turque, Della and Casper, Corinne, "Fish Diversity and Coral Health of Tanzania's Reefs: A comparative study between the Ushongo Village Reef and the Fungu Zinga Reef over time" (2016). Independent Study Project (ISP) Collection. 2438. https://digitalcollections.sit.edu/isp_collection/2438 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. Fish Diversity and Coral Health of Tanzania’s Reefs A comparative study between the Ushongo Village Reef and the Fungu Zinga Reef over time Della Turque and Corinne Casper University of Denver Advisor: Kerstin Erler and Felicity Kitchin/Oscar Pascal SIT Tanzania Fall 2016 Acknowledgements To Kerstin at Kasa Divers, without whom our study project would have truly been impossible.
    [Show full text]
  • Pacific Reef Assessment and Monitoring Program Data Report
    Pacific Reef Assessment and Monitoring Program Data Report Ecological monitoring 2012–2013—reef fishes and benthic habitats of the main Hawaiian Islands, American Samoa, and Pacific Remote Island Areas A. Heenan1, P. Ayotte1, A. Gray1, K. Lino1, K. McCoy1, J. Zamzow1, and I. Williams2 1 Joint Institute for Marine and Atmospheric Research University of Hawaii at Manoa 1000 Pope Road Honolulu, HI 96822 2 Pacific Islands Fisheries Science Center National Marine Fisheries Service NOAA Inouye Regional Center 1845 Wasp Boulevard, Building 176 Honolulu, HI 96818 ______________________________________________________________ NOAA Pacific Islands Fisheries Science Center PIFSC Data Report DR-14-003 Issued 1 April 2014 This report outlines some of the coral reef monitoring surveys conducted by the National Oceanic and Atmospheric Administration (NOAA) Pacific Islands Fisheries Science Center’s Coral Reef Ecosystem Division in 2012 and 2013. This includes the following regions: American Samoa, the main Hawaiian Islands and the Pacific Remote Island Areas. 2 Acknowledgements Thanks to all those onboard the NOAA ships Hi`ialakai and Oscar Elton Sette for their logistical and field support during the 2012-2013 Pacific Reef Assessment and Monitoring Program (Pacific RAMP) research cruises and to the following divers for their assistance with data collection; Senifa Annandale, Jake Asher, Marie Ferguson, Jonatha Giddens, Louise Giuseffi, Mark Manuel, Marc Nadon, Hailey Ramey, Ben Richards, Brett Schumacher, Kosta Stamoulis and Darla White. We thank Rusty Brainard for his tireless support of Pacific RAMP and the staff of NOAA PIFSC CRED for assistance in the field and data management. This work was funded by the NOAA Coral Reef Conservation Program and the Pacific Islands Fisheries Science Center.
    [Show full text]