Ultrastructure of the Esophagus of Larvae of the Soybean Cyst Nematode, Heterodera Glydnes

Total Page:16

File Type:pdf, Size:1020Kb

Ultrastructure of the Esophagus of Larvae of the Soybean Cyst Nematode, Heterodera Glydnes Proc. Helminthol. Soc. Wash. 51(1), 1984, pp. 1-24 Ultrastructure of the Esophagus of Larvae of the Soybean Cyst Nematode, Heterodera glydnes BURTON Y. ENDO Nematology Laboratory, Plant Protection Institute, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705 ABSTRACT: The cell bodies of the stylet protractor muscles and of the tissue immediately surrounding the stylet shaft are located in the anterior procorpus alongside the cells of the procorpus proper. The protractor muscle cell bodies are in the dorsal and ventrosublateral sectors and those related to the shaft are in the dorsosublateral and ventral sectors. The dorsal gland duct ampulla lies in the anterior procorpus and from it, the sclerotized duct with its valve or end apparatus joins the esophageal lumen just behind the stylet knobs. Secondary muscle cells lie centripetal to the protractor muscle cells. Constraining muscles occur in the posterior region of the procorpus. The metacorpus consists of a pump chamber operated by a complex of muscle units with their perikaryons and innervation. The subventral gland processes end as ampullae from which the valved sclerotized ducts joint the esophageal lumen at the posterior triangular vestibule of the esophageal lumen. The isthmus is muscular anteriorly and the attenuated gland extensions are encircled by the nerve ring. The dorsal gland occupies most of the anterior of the gland lobe; the two subventral glands that appear as separate cells occupy the posterior region. The esophageal-intestinal valve is adjacent to the dorsal gland nucleus. The soybean cyst nematode Heterodera gly- gans and the stomatal region of//, glydnes. This dnes Ichinohe, 1952 is a major pest of soybeans. paper described the ultrastructure of the esoph- Host-parasite studies with emphasis on host re- agus with emphasis on the procorpus, metacor- sponses (Endo, 1964, 1965; Gipsonetal., 1971) pus, and glandular organs. The general mor- have been augmented recently by ultrastructural phology of the nerve ring is also included. studies on the morphology of males and larvae of the root-knot and soybean cyst nematodes Materials and Methods (Baldwin and Hirschmann, 1973, 1975a,b, 1976; Freshly hatched second-stage larvae of Heterodera glydnes Ichinohe, 1952 were prepared for electron mi- Endo and Wergin, 1973, 1977; Wergin and Endo, croscopic examination by using published procedures 1976; Baldwin et al., 1977; Endo, 1978, 1980). (Endo and Wergin, 1973; Wergin and Endo, 1976). Observations and reviews of other tylenchid Briefly, nematodes in a suspension of water were mixed species (Bird, 1967, 1968, 1971; Wisse and with warm liquified 2% water-agar and the mixture Daems, 1968; Yuen, 1968b; Byers and Ander- was poured into small grooves in agar-filled petri dish- es. The solidified agar, containing the nematodes, was son, 1972; De Grisse et al., 1974; Anderson and diced into 2- to 3-mm blocks that were transferred to Byers, 1975; De Grisse, 1977; Coomans, 1979b; glass vials containing 3% glutaraldehyde in 0.05 M Natasasmita, 1979; Shepherd et al., 1980; Bald- phosphate buffer (pH 6.8) at 22°C for chemical fixation win, 1982) have provided a substantial base for of the larvae. Subsequent rinsing and postfixation in osmium tetroxide were also carried out in 0.05 M phos- further investigations of these and other major phate buffer (pH 6.8). The glutaraldehyde fixation (for plant parasitic nematodes. Furthermore, in eval- 1.5 hr) was followed by washing in six changes of buffer uating the ultrastructure of plant parasitic nem- over a period of 1 hr. The agar blocks were then post- atodes, it is essential that information gained on fixed in 2% osmium tetroxide for 2 hr at 22°C, dehy- fundamental biology of the rhabditid nematode, drated in an acetone series, and infiltrated with a low viscosity embedding medium (Spurr, 1969). Silver-gray Caenorhabditis elegans, and a wide range of an- sections of selected nematodes were cut with a dia- imal parasitic species be applied to newly ac- mond knife and mounted on uncoated 75 x 300-mesh quired data on plant parasitic species (Yuen, copper grids. The sections were stained with uranyl 1968a; Wright, 1974, 1980; Ward et al., 1975; acetate and lead citrate and viewed in a Philips 301 electron microscope1 that was operated at 60 kV with Wareetal., 1975; Albertson and Thomson, 1976; a 20-Mm aperture. McLaren, 1976; Sulston, 1976). New terminol- ogy proposed by Coomans (1979a) has been used to describe certain regions of the nematode that show well denned triradiate symmetry. 1 Mention of a trademark, proprietary, product, or vendor does not constitute a guarantee or warranty of Previous ultrastructural observations of sec- the product by the U.S. Department of Agriculture and ond-stage larvae of the soybean cyst nematode does not imply its approval to the exclusion of other concentrated on the anterior neurosensory or- products of vendors that may also be suitable. 1 Copyright © 2011, The Helminthological Society of Washington PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY Results ampulla (Fig. 6). Microtubules (Mt) that occur The anterior cells of the procorpus were closely in the elongated cytoplasmic extension of the associated with the stylet protractor muscles dorsal gland appear to converge and terminate (Endo, 1983). The myofilamentous region of each at the base of the tetraradiate valve in the dorsal muscle cell is continuous with the sarcoplasmic gland ampulla (Figs. 6, 6a, 9). In the vicinity of region that lies adjacent and posterior to the sty- the valve, neurosecretion-laden nerve processes let knobs (Figs. 1-4). The cytoplasm around the (NP) lie close to the dorsal surface of the ampulla zone of attachment to the knobs is largely elec- (Fig. 8). Internally, the cytoplasm of the ampulla tron translucent except for the tonofilaments. A is interspersed with numerous dense secretory region of abundant mitochondria lies behind this granules with closely adhering membranes (Figs. zone (Figs. 2-4). 6, 8). The ampulla (Fig. 8) and the supporting dorsal Procorpus gland extension (Fig. 9) lie in contact with cells Two protractor muscle cells, one with its nu- that border the perimeter of the esophageal lu- cleus in view (Fig. 2), are shown to be separated men wall. Thus, when the stylet is retracted, the by another wedge-shaped cell—one of three such dorsal gland process takes the same sinuous route cells that have anterior extensions that traverse through the procorpus as the lumen (Figs. 6, 9). between the three stylet knobs. Their anterior The multicellular procorpus contains six nu- extensions surround the shaft of the stylet (Figs. clei that lie in the extreme anterior region, three 1-4) and slightly posterior to the stylet knobs, are associated with the stylet protractor muscles these same cells appear perradial in cross section and three with the stylet shaft tissues. In addi- and extend from the lumen wall to the basement tion, five nuclei occur in the midregion, and five membrane of the procorpus (Fig. 5). Each of the in the narrow posterior region of the procorpus, three perradial cells (ShC) and the three inter- just anterior to the metacorpus (Figs. 9, 10). radial protractor muscle cells (PMC) contain nu- "Constraining muscles" (CM) are present in merous mitochondria and a nucleus. The sar- the posterior region of the procorpus. These mul- coplasm of the secondary stylet protractor tidirectional muscle elements are primarily cir- muscles (ScC) lies between the arms of the per- cular in orientation with certain muscle elements radial muscle cells (ShC) and is bordered on the directed anteriorly (Figs. 1,9, 10, 12). These con- outside by the protractor muscle cells (PMC) straining muscles may affect the lateral limits of (Figs. 4, 5). the dorsal gland extension as it passes from the An integral part of the procorpus is the dorsally metacorpus into the procorpus. The esophageal located branch of the esophageal lumen that ends lumen (EL) is circular in cross section through in a tetraradiate valve within the ampulla of the this region and becomes triradiate at the meta- dorsal esophageal gland (Figs. 1, Ic, 6, 6a, 6b, 7, corpus pump (Figs. 12-14, 17-19). In cross sec- 8). The valve is shown in a closed position in tion, the constraining muscles are shown without longitudinal-oblique view (Figs. 6, 6a) and in hemidesmosomal contacts with the tubular lu- cross sections ranging from the highly sclerotized men wall (Fig. lOa). basal region (Figs. 6a, 7) to its distal regions (Figs. 6b and 8). In cross section, the distal parts of the Metacorpus closed valve form a cloverleaf pattern of multiple Posterior to the constraining muscles of the and single membranes (Fig. 6b). Ai; the junction procorpus, the lumen wall (ELW) is supported with the dorsal gland duct, the valve is contin- by multiple membranes (MM) and is surrounded uous with the anterior wall of the dorsal gland by longitudinally oriented elements of the pump Figure 1. Diagrams of longitudinal views (LV) through the esophagus of H. glycines. (a) LV of the anterior region. Numbers of the diagram correspond to the micrographs in the text, (b) Terminology of body regions of nematodes with emphasis on triradiate symmetry of the esophagus (after Coomans, 1979a; Grootaert and Coo- mans, 1980). (c) LV showing a closed valve or end apparatus within a dorsal gland ampulla. Note the infolded valve membrane curves into the valve duct lumen, (d) LV showing the open valve or end apparatus within one of a pair of subventral gland ampullae. Copyright © 2011, The Helminthological Society of Washington OF WASHINGTON, VOLUME 51, NUMBER 1, JANUARY 1984 DORSAL GLAND ORIFICE & VALVE 2,3, —5 4,6 7, 8 DORSAL GLAND AMPULLA SUBVENTRAL GLAND ORIFICE & VALVE 28 SUBVENTRAL GLANDS INTESTINE Copyright © 2011, The Helminthological Society of Washington 4 • PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY muscle (Fig.
Recommended publications
  • Population Variability of Rotylenchulus Reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Plant Pathology Commons Recommended Citation Leach, Megan, "Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems" (2010). All Dissertations. 669. https://tigerprints.clemson.edu/all_dissertations/669 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. POPULATION VARIABILITY OF ROTYLENCHULUS RENIFORMIS IN COTTON AGROECOSYSTEMS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Sciences by Megan Marie Leach December 2010 Accepted by: Dr. Paula Agudelo, Committee Chair Dr. Halina Knap Dr. John Mueller Dr. Amy Lawton-Rauh Dr. Emerson Shipe i ABSTRACT Rotylenchulus reniformis, reniform nematode, is a highly variable species and an economically important pest in many cotton fields across the southeast. Rotation to resistant or poor host crops is a prescribed method for management of reniform nematode. An increase in the incidence and prevalence of the nematode in the United States has been reported over the
    [Show full text]
  • Occurrence of Ditylenchus Destructorthorne, 1945 on a Sand
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE Occurrence of Ditylenchus destructor Thorne, 1945 on a sand dune of the Baltic Sea Renata Dobosz1*, Katarzyna Rybarczyk-Mydłowska2, Grażyna Winiszewska2 1 Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznan, Poland 2 Nematological Diagnostic and Training Centre, Museum and Institute of Zoology Polish Academy of Sciences, Warsaw, Poland Vol. 60, No. 1: 31–40, 2020 Abstract DOI: 10.24425/jppr.2020.132206 Ditylenchus destructor is a serious pest of numerous economically important plants world- wide. The population of this nematode species was isolated from the root zone of Ammo- Received: July 11, 2019 phila arenaria on a Baltic Sea sand dune. This population’s morphological and morphomet- Accepted: September 27, 2019 rical characteristics corresponded to D. destructor data provided so far, except for the stylet knobs’ height (2.1–2.9 vs 1.3–1.8) and their arrangement (laterally vs slightly posteriorly *Corresponding address: sloping), the length of a hyaline part on the tail end (0.8–1.8 vs 1–2.9), the pharyngeal gland [email protected] arrangement in relation to the intestine (dorsal or ventral vs dorsal, ventral or lateral) and the appearance of vulval lips (smooth vs annulated). Ribosomal DNA sequence analysis confirmed the identity of D. destructor from a coastal dune. Keywords: Ammophila arenaria, internal transcribed spacer (ITS), potato rot nematode, 18S, 28S rDNA Introduction Nematodes from the genus Ditylenchus Filipjev, 1936, arachis Zhang et al., 2014, both of which are pests of are found in soil, in the root zone of arable and wild- peanut (Arachis hypogaea L.), Ditylenchus destruc- -growing plants, and occasionally in the tissues of un- tor Thorne, 1945 which feeds on potato (Solanum tu- derground or aboveground parts (Brzeski 1998).
    [Show full text]
  • The Complete Mitochondrial Genome of the Columbia Lance Nematode
    Ma et al. Parasites Vectors (2020) 13:321 https://doi.org/10.1186/s13071-020-04187-y Parasites & Vectors RESEARCH Open Access The complete mitochondrial genome of the Columbia lance nematode, Hoplolaimus columbus, a major agricultural pathogen in North America Xinyuan Ma1, Paula Agudelo1, Vincent P. Richards2 and J. Antonio Baeza2,3,4* Abstract Background: The plant-parasitic nematode Hoplolaimus columbus is a pathogen that uses a wide range of hosts and causes substantial yield loss in agricultural felds in North America. This study describes, for the frst time, the complete mitochondrial genome of H. columbus from South Carolina, USA. Methods: The mitogenome of H. columbus was assembled from Illumina 300 bp pair-end reads. It was annotated and compared to other published mitogenomes of plant-parasitic nematodes in the superfamily Tylenchoidea. The phylogenetic relationships between H. columbus and other 6 genera of plant-parasitic nematodes were examined using protein-coding genes (PCGs). Results: The mitogenome of H. columbus is a circular AT-rich DNA molecule 25,228 bp in length. The annotation result comprises 12 PCGs, 2 ribosomal RNA genes, and 19 transfer RNA genes. No atp8 gene was found in the mitog- enome of H. columbus but long non-coding regions were observed in agreement to that reported for other plant- parasitic nematodes. The mitogenomic phylogeny of plant-parasitic nematodes in the superfamily Tylenchoidea agreed with previous molecular phylogenies. Mitochondrial gene synteny in H. columbus was unique but similar to that reported for other closely related species. Conclusions: The mitogenome of H. columbus is unique within the superfamily Tylenchoidea but exhibits similarities in both gene content and synteny to other closely related nematodes.
    [Show full text]
  • Hirschmannia Ng Differentiated from Radopholusthorne, 1949
    I Nemaiologica 7 (1962) : 197-202. Leiden, E. J. Brill HZRSCHMANNZA N.G. DIFFERENTIATED FROM RADOPHOLUS THORNE, 1949 (NEMATODA : TYLENCHOIDEA ) BY MICHEL LUC AND BASIL GOODEY O.R.S.T.O.M., I.D.E.R.T., Abidjan, Côte d’Ivoire and Rothamsted Experimental Station, Harpenden, England respectively Re-examination of a specimen of Tylenchorhyyncbus spinicaitdattls Sch. Stek., 1944 showed it to be conspecific with Rudopholus 1avubr.i Luc, 1957. This is made the type of Hirschmannia n.g. which also contains H. gracilis n. comb, and H: oryzne n. comb. The lectotype of H. spizicaudata is redescribed and Rndopholur redefined. Schuurmans Stelthoven ( 1944) described two female nematodes, from material collected in the Albert National Park, former Belgian Congo, as Tylenchorhynchus spinicaadatas. The species has been overlooked by nematologists and subsequently not dealt with in either general or specialised papers, though Tarjan (1961) records it. One of us (M.L.) has recently examined one of the original specimens and found that, in two important respects, the original description was inadequate: 1 ) there is a considerable overlap of oesophagus and intestine instead of an abutted junction as figured by Schuurmans Stelchoven (Fig. 1 a, c); 2) the lateral field is 217 of the body-width and is areolated so that each of the four incisures is crenate (Schuurmans Stekhoven reported the lateral fields at 118 of the body- width and not crenate). These clarifications of the form of the oesophagus, combined with the shape of the head, spear and tail, indicate that the species should be transferred from Tylenchorhync,haJJO Radopholtu.
    [Show full text]
  • A Synopsis of the Genera and Species in the Tylenchorhynchinae (Tylenchoidea, Nematoda)1
    OF WASHINGTON, VOLUME 40, NUMBER 1, JANUARY 1973 123 Speer, C. A., and D. M. Hammond. 1970. tured bovine cells. J. Protozool. 18 (Suppl.): Development of Eimeria larimerensis from the 11. Uinta ground squirrel in cell cultures. Ztschr. Vetterling, J. M., P. A. Madden, and N. S. Parasitenk. 35: 105-118. Dittemore. 1971. Scanning electron mi- , L. R. Davis, and D. M. Hammond. croscopy of poultry coccidia after in vitro 1971. Cinemicrographic observations on the excystation and penetration of cultured cells. development of Eimeria larimerensis in cul- Ztschr. Parasitenk. 37: 136-147. A Synopsis of the Genera and Species in the Tylenchorhynchinae (Tylenchoidea, Nematoda)1 A. C. TARJAN2 ABSTRACT: The genera Uliginotylenchus Siddiqi, 1971, Quinisulcius Siddiqi, 1971, Merlinius Siddiqi, 1970, Ttjlenchorhynchus Cobb, 1913, Tetylenchus Filipjev, 1936, Nagelus Thome and Malek, 1968, and Geocenamus Thorne and Malek, 1968 are discussed. Keys and diagnostic data are presented. The following new combinations are made: Tetylenchus aduncus (de Guiran, 1967), Merlinius al- boranensis (Tobar-Jimenez, 1970), Geocenamus arcticus (Mulvey, 1969), Merlinius brachycephalus (Litvinova, 1946), Merlinius gaudialis (Izatullaeva, 1967), Geocenamus longus (Wu, 1969), Merlinius parobscurus ( Mulvey, 1969), Merlinius polonicus (Szczygiel, 1970), Merlinius sobolevi (Mukhina, 1970), and Merlinius tatrensis (Sabova, 1967). Tylenchorhynchus galeatus Litvinova, 1946 is with- drawn from the genus Merlinius. The following synonymies are made: Merlinius berberidis (Sethi and Swarup, 1968) is synonymized to M. hexagrammus (Sturhan, 1966); Ttjlenchorhynchus chonai Sethi and Swarup, 1968 is synonymized to T. triglyphus Seinhorst, 1963; Quinisulcius nilgiriensis (Seshadri et al., 1967) is synonymized to Q. acti (Hopper, 1959); and Tylenchorhynchus tener Erzhanova, 1964 is regarded a synonym of T.
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • Pratylenchus
    Pratylenchus Taxonomy Class Secernentea Order Tylenchida Superfamily Tylenchoidea Family Pratylenchidae Genus Pratylenchus The genus name is derived from the words pratum (Latin= meadow), tylos (Greek= knob) and enchos ( Greek=spear). Originally described as Tylenchus pratensis by De Man in 1880 from a meadow in England. Pratylenchus scribneri was reported from potato in Tennessee in 1889. Root-lesion nematodes of the genus Pratylenchus are recognised worldwide as major constraints of important economic crops, including banana, cereals, coffee, corn, legumes, peanut, potato and many fruits. Their economic importance in agriculture is due to their wide host range and their distribution in every terrestrial environment on the planet (Castillo and Vovlas, 2007). Plant‐parasitic nematodes of the genus Pratylenchus are among the top three most significant nematode pests of crop and horticultural plants worldwide. There are more than 70 described species, most are polyphagous with a wide range of host plants. Because they do not form obvious feeding patterns characteristic of sedentary endoparasites (e.g. galls or cysts), and all worm‐like stages are mobile and can enter and leave host roots, it is more difficult to recognise their presence and the damage they cause. Morphology There are more than 70 described species, fewer than half of them are known to have males. Morphological identification of Pratylenchus species is difficult, requiring considerable subjective evaluation of characters and overlapping morphomertrics. Nematodes in this genus are 0.4-0.5 mm long (under 0.8 mm). No sexual dimorphism in the anterior part of the body. Deirids absent. Lip area low, flattened anteriorly, not offset, or only weakly offset, from body contour.
    [Show full text]
  • Studies on the Morphology and Bio-Ecology of Nematode Fauna of Rewa
    STUDIES ON THE MORPHOLOGY AND BIO-ECOLOGY OF NEMATODE FAUNA OF REWA A TMESIS I SUBMITTED FOR THE DEGREE OF DOCTOR OF PHlLOSOPHy IN ZOOLOGY A. P. S. UNIVERSITY. REWA (M. P.) INDIA 1995 MY MANOJ KUMAR SINGH ZOOLOGICAL RESEARCH LAB GOVT. AUTONOMOUS MODEL SCIENCE COLLEGE REWA (M. P.) INDIA La u 4 # s^ ' T5642 - 7 OCT 2002 ^ Dr. C. B. Singh Department of Zoology M Sc, PhD Govt Model Science Coll Professor & Head Rewa(M P ) - 486 001 Ref Date 3^ '^-f^- ^'^ir CERTIFICATE Shri Manoj Kumar Singh, Research Scholar, Department of Zoology, Govt. Model Science College, Rewa has duly completed this thesis entitled "STUDIES ON THE MORPHOLOGY AND BIO-ECOLOGY OF NEMATODE FAUNA OF REWA" under my supervision and guidance He was registered for the degree of Philosophy in Zoology on Jan 11, 1993. Certified that - 1. The thesis embodies the work of the candidate himself 2. The candidate worked under my guidance for the period specified b\ A. P. S. University, Rewa. 3. The work is upto the standard, both from, itscontentsas well as literary presentation point of view. I feel pleasure in commendingthis work to university for the awaid of the degree. (Dr. Co. Singh) or^ra Guide Professor & Head of Zoology department Govt. Model Science College (Autonomous) Rewa (M.P.) DECLARATION The work embodied in this thesis is original and was conducted druing the peirod for Jan. 1993 to July 1995 at the Zoological Research Lab, Govt. Model Science College Rewa, (M.P.) to fulfil the requirement for the degree of Doctor of Philosophy in Zoology from A.P.S.
    [Show full text]
  • Evaluation of Some Vulval Appendages in Nematode Taxonomy
    Comp. Parasitol. 76(2), 2009, pp. 191–209 Evaluation of Some Vulval Appendages in Nematode Taxonomy 1,5 1 2 3 4 LYNN K. CARTA, ZAFAR A. HANDOO, ERIC P. HOBERG, ERIC F. ERBE, AND WILLIAM P. WERGIN 1 Nematology Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected], [email protected]) and 2 United States National Parasite Collection, and Animal Parasitic Diseases Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected]) ABSTRACT: A survey of the nature and phylogenetic distribution of nematode vulval appendages revealed 3 major classes based on composition, position, and orientation that included membranes, flaps, and epiptygmata. Minor classes included cuticular inflations, protruding vulvar appendages of extruded gonadal tissues, vulval ridges, and peri-vulval pits. Vulval membranes were found in Mermithida, Triplonchida, Chromadorida, Rhabditidae, Panagrolaimidae, Tylenchida, and Trichostrongylidae. Vulval flaps were found in Desmodoroidea, Mermithida, Oxyuroidea, Tylenchida, Rhabditida, and Trichostrongyloidea. Epiptygmata were present within Aphelenchida, Tylenchida, Rhabditida, including the diverged Steinernematidae, and Enoplida. Within the Rhabditida, vulval ridges occurred in Cervidellus, peri-vulval pits in Strongyloides, cuticular inflations in Trichostrongylidae, and vulval cuticular sacs in Myolaimus and Deleyia. Vulval membranes have been confused with persistent copulatory sacs deposited by males, and some putative appendages may be artifactual. Vulval appendages occurred almost exclusively in commensal or parasitic nematode taxa. Appendages were discussed based on their relative taxonomic reliability, ecological associations, and distribution in the context of recent 18S ribosomal DNA molecular phylogenetic trees for the nematodes.
    [Show full text]
  • Numerical Taxonomy Helps Identification of Merliniidae
    Journal of Nematology 49(2):207–222. 2017. Ó The Society of Nematologists 2017. Numerical Taxonomy Helps Identification of Merliniidae and Telotylenchidae (Nematoda: Tylenchoidea) from Iran REZA GHADERI,HABIBALLAH HAMZEHZARGHANI, AND AKBAR KAREGAR Abstract: Numerical taxonomy was used for identification and grouping of the genera, species, and populations in the families Merliniidae and Telotylenchidae. The variability of each of 44 morphometric characters was evaluated by calculation of the co- efficient of variability (CV) and the ratio of extremes (max/min) in the range of 1,020 measured females. Also correlation and regression analyses were made between characters to find potential collinearities. Hierarchical cluster analysis (HCA) was used for (i) grouping 21 genera in the superfamily Dolichodoroidea based on literature data coded for states of 18 diagnostic characters, and (ii) for grouping Iranian populations belonging to selected genera. Furthermore, STEPDISC analysis was used for (i) grouping 11 genera of Merliniidae and Telotylenchidae based on the measurements of 35 characters from 1,007 Iranian female specimens, and (ii) grouping measured females of eight species of Amplimerlinius and Pratylenchoides. The multivariate data analysis approach showed robust enough to summarize relationship between morphometric characters and group genera, species, and populations of the nematodes and in particular help to identify the genera and species of Amplimerlinius and Pratylenchoides. Key words: Amplimerlinius, correlation, hierarchical cluster analysis, Pratylenchoides, principal component analysis. The families Merliniidae Siddiqi, 1971 and Teloty- 2008; Holterman et al., 2009; van Megen et al., 2009; lenchidae Siddiqi, 1960 are among the most problem- Panahandeh et al., 2014; Ghaderi et al., 2014) in- atical taxa in Tylenchida Thorne, 1949\Tylenchomorpha formation strongly support placement of Pratylen- De Ley and Blaxter, 2002.
    [Show full text]
  • Paraphyletic Genus Ditylenchus Filipjev (Nematoda, Tylenchida)
    A peer-reviewed open-access journal ZooKeys 568: 1–12 (2016)Paraphyletic genus Ditylenchus Filipjev (Nematoda, Tylenchida)... 1 doi: 10.3897/zookeys.568.5965 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Paraphyletic genus Ditylenchus Filipjev (Nematoda, Tylenchida), corresponding to the D. triformis-group and the D. dipsaci-group scheme Yuejing Qiao1, Qing Yu2, Ahmed Badiss2, Mohsin A. Zaidi2, Ekaterina Ponomareva2, Yuegao Hu1, Weimin Ye3 1 China Agriculture University, Beijing, China 2 Eastern Cereal and Oilseed Research Center, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada 3 Nematode Assay Section, Agronomic Division, North Carolina Department of Agriculture & Consumer Services, NC, USA Corresponding author: Qing Yu ([email protected]) Academic editor: H-P Fagerholm | Received 14 January 2015 | Accepted 1 February 2016 | Published 23 February 2016 http://zoobank.org/761198B0-1D54-43F3-AE81-A620DA0B9E81 Citation: Qiao Y, Yu Q, Badiss A, Zaidi MA, Ponomareva E, Hu Y, Ye W (2016) Paraphyletic genus Ditylenchus Filipjev (Nematoda, Tylenchida), corresponding to the D. triformis-group and the D. dipsaci-group scheme. ZooKeys 568: 1–12. doi: 10.3897/zookeys.568.5965 Abstract The genusDitylenchus has been divided into 2 groups: the D. triformis-group, and the D. dipsaci-group based on morphological and biological characters. A total of 18 populations belong to 5 species of Ditylen- chus was studied: D. africanus, D. destructor, D. myceliophagus and dipsaci, D. weischeri, the first 3 belong to the D. triformis-group, the last 2 the D. dipsaci-group. The species of D. triformis-group were cultured on fungi, while the species from D.
    [Show full text]
  • Description of Helicotylenchus Persiaensis Sp. N. (Nematoda: Hoplolaimidae) from Iran
    Zootaxa 3785 (4): 575–588 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3785.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:987B039E-9EF7-475C-BFC4-ECBB8E0EB95F Description of Helicotylenchus persiaensis sp. n. (Nematoda: Hoplolaimidae) from Iran LEILA KASHI & AKBAR KAREGAR1 Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran 1Corresponding author. E-mail: [email protected] Abstract In order to identify the species of Helicotylenchus Steiner, 1945 present in Iran, 497 soil and root samples were collected from the rhizosphere of different plants and localities throughout the country during 2009-2010. A new and several known species of Helicotylenchus were identified from the collected material. H. persiaensis sp. n. is characterized by its short tail (8-11 µm , c = 54.2–79.0, c′ = 0.6–1.2), usually with smooth terminus or with 1–3 very coarse annules, rarely with minor ventral, dorsal or lateral projection, conical and truncate head with 4–5 distinct annules, stylet 22–26 µm long with anteriorly flattened knobs, relatively short body length (570–730 µm) and absence of males. This species was collected from the rhizosphere of zelkova (Zelkova carpinifolia) and maple (Acer sp.) forest trees in Golestan province, northern Iran. Also observed were H. abunaamai Siddiqi, 1972, with a small ventral projection at the tail terminus, and H. crena- cauda Sher, 1966, with long projection and indented terminus, collected from sugarcane (Haft-Tapeh, Khuzestan prov- ince) and rice rhizosphere (Chabok-Sar, Gilan province), respectively.
    [Show full text]