A Revision of the Genus Rotylenchulus Liiiford and Oliveira, 1940 (Nematoda: Tylenchiclae)1 D

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of the Genus Rotylenchulus Liiiford and Oliveira, 1940 (Nematoda: Tylenchiclae)1 D OF WASHINGTON, VOLUME 35, NUMBER 2, JULY 1968 169 Hagan, H., and R. Hoopingarner. In press. vien) (Sphaerulariidae: Aphelenchoidea), a Mermithid nematode parasitism of Aedes nematode parasite of sciarid flies (Sciariclae: stimulans (Walker) (Diptera: Culicidae) Diptera). Parasitology 55: 559-569. from Ingham County, Michigan. Ann. Ent. In press. Arthropod immunity to worms. Soc. Amer. In: Jackson, G., and R. Herman, Immunity Hyinan, L. H. 1951. The Invertebrates: Acan- to parasitic animals. Appleton-Century-Crofts, thocephala, Aschelminthes, and Entoprocta, New York. The pseudocoelomate bilateria. Vol. III. Mc- -, and H. E. Welch. In press. A new Graw-Hill, New York. 572 pp. nematode, Filipjevimermis leipsandra sp. nov. Johnson, A. A. 1955. Life history studies on (Mermithidae) parasitic in chrysomelid larvae Hydromermis contorta (Kohn), a nematode (Coleoptera). J. Invert. Path. parasite of Chironomiis plumostis (L.). Ph.D. Rennie, J. 1925. A mermithid parasite of Tipula thesis Univ. 111. 92 pp. paludosa Meigen. Proc. Royal Phys. Soc. Lavoipierre, M. J. J. 1958. Studies on the host- Edinb., 21: 1-3. parasite relationships of filarial nematodes and Rimando, L. C., R. A. Corey, and Yun-Pei Sun. their arthropod hosts. 1. The sites of develop- 1965. Mass rearing of the western spotted ment and the migration of Loa loa in Chnj- cucumber beetle. J. Econ. Ent. 59: 230-231. sops silacea, the escape of the infective forms Steiner, G. 1933. Some morphological and phys- from the head of the fly, and the effect of the iological characters of the mermithids in their worm on its insect host. Ann. Trop. Med. relationship to parasitism. J. Parasit. 19: Parasit. 52: 103-121. 249-250. Poinar, Jr., G. O. 1965. The bionomics and Strickland, E. H. 1930. Phagocytosis of inter- parasitic development of Tripius sciarae (Bo- nal insect parasites. Nature. London, 126: 95. A Revision of the Genus Rotylenchulus Liiiford and Oliveira, 1940 (Nematoda: Tylenchiclae)1 D. R. DASGUPTA, D. J. RASKI, AND S. A. SHER Department of Nematology, University of California Species of the genus Rotylenchulus have The genus Rotylenchulus was proposed by been one of the most misidentified groups of Linford and Oliveira in 1940 when they de- all the tylenchs. As evidence, nematodes scribed R. reniformis. Yokoo and Tanaka belonging to this genus have been described (1954) described Tetylenchus nicotiana from in at least four different genera. Also this Japan which was subsequently transferred to genus has been variously assigned to three the genus Rotylenchulus by Baker (1962). families: Tylenchidae (Linford and Oliveira, Three other species (Helicotylenchus eli- 1940; Thome, 1949, 1961; Allen and Sher, sensis Carvalho, 1957, 1959; Spirotylenchus 1967); Heteroderidae (Chitwood and Chit- queirozi Lordello and Cesnik, 1958, and Heli- wood, 1950; Skarbilovich, 1960); Hoplolaim- cotylenchus parvus Williams, 1960) were idae (Hopper and Cairns, 1959; Goodey, transferred to the genus Rotylenchulus by Sher 1963; Husain and Khan, 1967) and five dif- (1961). In 1960 Das proposed a new genus, ferent subfamilies: Nacobbinae (Hopper and Leiperotylenchus, which he considered to be Cairns, 1959; Goodey, 1963); Pratylenchinae closely related to Tylenchus and Ditylenchus. (Thome, 1949, 1961; Baker, 1962); Tylen- However, the position of the dorsal gland chulinae (Skarbilovich, 1960); Hoplolaiminae orifice and characters of male tail indicated a (Loof and Oostenbrink, 1962); Rotylenchul- close relationship with Rotylenchulus. Indeed, inae (Husain and Khan, 1967; Allen and Sher, Loof and Oostenbrink (1962) transferred 1967). Leiperotylenchus leiperi to the genus Roty- lenchulus. Goodey (1963) synonymized eli- i A part of the thesis submitted by senior author in par- sensis, parvus, leiperi and queirozi with R. tial fulfillment of the requirements for the Ph.D. degree, University of California, Davis. reniformis. Husain and Khan (1965) described Copyright © 2011, The Helminthological Society of Washington 170 PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY R. stakmani from India. Swarup, et al. (1967) land (USDANC, Beltsville); Nematology De- considered it a synonym of R. reniformis. partment, Rothamsted Experimental Station, The kidney-shaped mature females from Harpenden, England (NDRES, England); which the common name, reniform nematodes, Plantenziektenkundige Dienst, Wageningen, was derived, are described only in two species, The Netherlands (PD, The Netherlands). R. reniformis and R. borcalis. The descriptions of other species were based on immature Morphology of Rotylenchulus females and males. Rotylenchulus species are characterized by Representatives of the genus Rotylenchulus sexual dimorphism, mature females being have world-wide distribution and their host swollen to kidney shape and males vermiform records are numerous and diverse (Linford with not as well developed stylet and esoph- and Yap, 1940; Peacock, 1956; Martin, 1955). agus. Although detailed morphology of Their general occurrence and economically mature females is obscure, the overall shape great potential as plant pathogens make it and that part of the body posterior to the especially important that the taxonomy of this vulva provide useful taxonomic characters. group be soundly established to assure accu- Fixed specimens of males, immature females rate identification of species. For this purpose and larvae assume a spiral to open C shape this study has been carried out. upon fixation. INCISURES: Immature females, males and Materials and Methods larvae all have four incisures in the lateral Over 3,500 permanently mounted specimens field. Posteriorly on males these incisures of Rotylenchulus from more than thirty coun- extend varying distances from slightly anterior tries covering most parts of the world have to the cloacal opening to about midway on been assembled for this generic revision. Type the tail. The most ventral line always ends at specimens for most of the nominal species of the level of or anterior to the cloaca and on this genus were obtained. the caudal alae except in R. macrodoratus For immature females two measurements of where that ventral line appears to merge with the esophagus, b and b' (Sher, 1963), are the edge of the caudal alae. The lateral field included in the de Man formula. Also included of mature females was not visible. in these measurements are: o (Perry, Darling PHASMIDS: These are porelike and located and Thome, 1959); c' (Sher, 1986) and h slightly anterior to the middle of the tail. (length of hyaline portion of tail in microns). EXCRETORY PORE: The excretory pore is The measurements given in parenthesis in located posterior to the median bulb in all descriptions of the holotype, allotype and neo- species. type refer to population range. HEMIZONID: The hemizonid is two to three An immature female was designated as annules long and immediately anterior to the holotype for R. parvus and mature females as excretory pore. holotype for R. borealis and neotype for R. LIP REGION: The lip region is continuous, nicotiana. The immature female is used as not set off and varies in shape and annulation. the holotype for the new species described Most species have either low and rounded lip here because many morphological characters region (R. parvus) or higher and conoid in are more easily seen in these than in swollen shape (R. macrodoratus n. sp.). Some species females. The swollen female is more difficult appear to be intermediate between these two to collect, indeed is unknown for most species categories (R. reniformis1). despite diligent search for them. Immature females of some species have Type specimens are being deposited in five three or more distinct annules (R. reniformis). permanent institutional collections -which are In other species there is evidence of fine indicated by the following abbreviations: ampliations, but these are difficult to count University of California Nematode Collection, (R. parvus). There is still another group Davis (UCNC, Davis); University of Califor- where annulation is entirely lacking or the nia Nematode Collection, Riverside (UCNC, annules are too fine to resolve (R. leptus n. Riverside); United States Department of Agri- sp.). culture Nematode Collection, Beltsville, Mary- The shape and annulation of the lip region Copyright © 2011, The Helminthological Society of Washington OF WASHINGTON, VOLUME 35, NUMBER 2, JULY 1968 171 of larvae in all species are similar to the im- agus in males is much reduced with almost mature females except R. anamictus n. sp. no evidence of the median bulb, valve and where the larvae have a conoid lip region in lumen. The posterior part of the male esoph- contrast to the low and rounded lip region of agus overlaps the intestine laterally and ven- immature females. Males in general have a trally, usually more ventrally. rounded lip region. The esophagus of the second-stage larva is The labial framework of immature females not reduced like that of males. Often it is is conspicuous. The cheilorhabdions are obscure in fixed specimens but when seen it thickened anteriorly, extend laterally and in is usually similar to the immature female. some species are thickened at both ends. The However, the posterior part of the esophagus basal ring of the cephalic framework has the of larvae is often asymmetrical. same thickness as that of the cheilorhabdions REPRODUCTIVE SYSTEM: Rotijlenchulus fe- and arches posteriorly in a characteristic man- males have didelphic, amphidelphic ovaries. ner. The cephalic framework in males is The ovaries
Recommended publications
  • Population Variability of Rotylenchulus Reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Plant Pathology Commons Recommended Citation Leach, Megan, "Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems" (2010). All Dissertations. 669. https://tigerprints.clemson.edu/all_dissertations/669 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. POPULATION VARIABILITY OF ROTYLENCHULUS RENIFORMIS IN COTTON AGROECOSYSTEMS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Sciences by Megan Marie Leach December 2010 Accepted by: Dr. Paula Agudelo, Committee Chair Dr. Halina Knap Dr. John Mueller Dr. Amy Lawton-Rauh Dr. Emerson Shipe i ABSTRACT Rotylenchulus reniformis, reniform nematode, is a highly variable species and an economically important pest in many cotton fields across the southeast. Rotation to resistant or poor host crops is a prescribed method for management of reniform nematode. An increase in the incidence and prevalence of the nematode in the United States has been reported over the
    [Show full text]
  • Occurrence of Ditylenchus Destructorthorne, 1945 on a Sand
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE Occurrence of Ditylenchus destructor Thorne, 1945 on a sand dune of the Baltic Sea Renata Dobosz1*, Katarzyna Rybarczyk-Mydłowska2, Grażyna Winiszewska2 1 Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznan, Poland 2 Nematological Diagnostic and Training Centre, Museum and Institute of Zoology Polish Academy of Sciences, Warsaw, Poland Vol. 60, No. 1: 31–40, 2020 Abstract DOI: 10.24425/jppr.2020.132206 Ditylenchus destructor is a serious pest of numerous economically important plants world- wide. The population of this nematode species was isolated from the root zone of Ammo- Received: July 11, 2019 phila arenaria on a Baltic Sea sand dune. This population’s morphological and morphomet- Accepted: September 27, 2019 rical characteristics corresponded to D. destructor data provided so far, except for the stylet knobs’ height (2.1–2.9 vs 1.3–1.8) and their arrangement (laterally vs slightly posteriorly *Corresponding address: sloping), the length of a hyaline part on the tail end (0.8–1.8 vs 1–2.9), the pharyngeal gland [email protected] arrangement in relation to the intestine (dorsal or ventral vs dorsal, ventral or lateral) and the appearance of vulval lips (smooth vs annulated). Ribosomal DNA sequence analysis confirmed the identity of D. destructor from a coastal dune. Keywords: Ammophila arenaria, internal transcribed spacer (ITS), potato rot nematode, 18S, 28S rDNA Introduction Nematodes from the genus Ditylenchus Filipjev, 1936, arachis Zhang et al., 2014, both of which are pests of are found in soil, in the root zone of arable and wild- peanut (Arachis hypogaea L.), Ditylenchus destruc- -growing plants, and occasionally in the tissues of un- tor Thorne, 1945 which feeds on potato (Solanum tu- derground or aboveground parts (Brzeski 1998).
    [Show full text]
  • The Complete Mitochondrial Genome of the Columbia Lance Nematode
    Ma et al. Parasites Vectors (2020) 13:321 https://doi.org/10.1186/s13071-020-04187-y Parasites & Vectors RESEARCH Open Access The complete mitochondrial genome of the Columbia lance nematode, Hoplolaimus columbus, a major agricultural pathogen in North America Xinyuan Ma1, Paula Agudelo1, Vincent P. Richards2 and J. Antonio Baeza2,3,4* Abstract Background: The plant-parasitic nematode Hoplolaimus columbus is a pathogen that uses a wide range of hosts and causes substantial yield loss in agricultural felds in North America. This study describes, for the frst time, the complete mitochondrial genome of H. columbus from South Carolina, USA. Methods: The mitogenome of H. columbus was assembled from Illumina 300 bp pair-end reads. It was annotated and compared to other published mitogenomes of plant-parasitic nematodes in the superfamily Tylenchoidea. The phylogenetic relationships between H. columbus and other 6 genera of plant-parasitic nematodes were examined using protein-coding genes (PCGs). Results: The mitogenome of H. columbus is a circular AT-rich DNA molecule 25,228 bp in length. The annotation result comprises 12 PCGs, 2 ribosomal RNA genes, and 19 transfer RNA genes. No atp8 gene was found in the mitog- enome of H. columbus but long non-coding regions were observed in agreement to that reported for other plant- parasitic nematodes. The mitogenomic phylogeny of plant-parasitic nematodes in the superfamily Tylenchoidea agreed with previous molecular phylogenies. Mitochondrial gene synteny in H. columbus was unique but similar to that reported for other closely related species. Conclusions: The mitogenome of H. columbus is unique within the superfamily Tylenchoidea but exhibits similarities in both gene content and synteny to other closely related nematodes.
    [Show full text]
  • Hirschmannia Ng Differentiated from Radopholusthorne, 1949
    I Nemaiologica 7 (1962) : 197-202. Leiden, E. J. Brill HZRSCHMANNZA N.G. DIFFERENTIATED FROM RADOPHOLUS THORNE, 1949 (NEMATODA : TYLENCHOIDEA ) BY MICHEL LUC AND BASIL GOODEY O.R.S.T.O.M., I.D.E.R.T., Abidjan, Côte d’Ivoire and Rothamsted Experimental Station, Harpenden, England respectively Re-examination of a specimen of Tylenchorhyyncbus spinicaitdattls Sch. Stek., 1944 showed it to be conspecific with Rudopholus 1avubr.i Luc, 1957. This is made the type of Hirschmannia n.g. which also contains H. gracilis n. comb, and H: oryzne n. comb. The lectotype of H. spizicaudata is redescribed and Rndopholur redefined. Schuurmans Stelthoven ( 1944) described two female nematodes, from material collected in the Albert National Park, former Belgian Congo, as Tylenchorhynchus spinicaadatas. The species has been overlooked by nematologists and subsequently not dealt with in either general or specialised papers, though Tarjan (1961) records it. One of us (M.L.) has recently examined one of the original specimens and found that, in two important respects, the original description was inadequate: 1 ) there is a considerable overlap of oesophagus and intestine instead of an abutted junction as figured by Schuurmans Stelchoven (Fig. 1 a, c); 2) the lateral field is 217 of the body-width and is areolated so that each of the four incisures is crenate (Schuurmans Stekhoven reported the lateral fields at 118 of the body- width and not crenate). These clarifications of the form of the oesophagus, combined with the shape of the head, spear and tail, indicate that the species should be transferred from Tylenchorhync,haJJO Radopholtu.
    [Show full text]
  • A Synopsis of the Genera and Species in the Tylenchorhynchinae (Tylenchoidea, Nematoda)1
    OF WASHINGTON, VOLUME 40, NUMBER 1, JANUARY 1973 123 Speer, C. A., and D. M. Hammond. 1970. tured bovine cells. J. Protozool. 18 (Suppl.): Development of Eimeria larimerensis from the 11. Uinta ground squirrel in cell cultures. Ztschr. Vetterling, J. M., P. A. Madden, and N. S. Parasitenk. 35: 105-118. Dittemore. 1971. Scanning electron mi- , L. R. Davis, and D. M. Hammond. croscopy of poultry coccidia after in vitro 1971. Cinemicrographic observations on the excystation and penetration of cultured cells. development of Eimeria larimerensis in cul- Ztschr. Parasitenk. 37: 136-147. A Synopsis of the Genera and Species in the Tylenchorhynchinae (Tylenchoidea, Nematoda)1 A. C. TARJAN2 ABSTRACT: The genera Uliginotylenchus Siddiqi, 1971, Quinisulcius Siddiqi, 1971, Merlinius Siddiqi, 1970, Ttjlenchorhynchus Cobb, 1913, Tetylenchus Filipjev, 1936, Nagelus Thome and Malek, 1968, and Geocenamus Thorne and Malek, 1968 are discussed. Keys and diagnostic data are presented. The following new combinations are made: Tetylenchus aduncus (de Guiran, 1967), Merlinius al- boranensis (Tobar-Jimenez, 1970), Geocenamus arcticus (Mulvey, 1969), Merlinius brachycephalus (Litvinova, 1946), Merlinius gaudialis (Izatullaeva, 1967), Geocenamus longus (Wu, 1969), Merlinius parobscurus ( Mulvey, 1969), Merlinius polonicus (Szczygiel, 1970), Merlinius sobolevi (Mukhina, 1970), and Merlinius tatrensis (Sabova, 1967). Tylenchorhynchus galeatus Litvinova, 1946 is with- drawn from the genus Merlinius. The following synonymies are made: Merlinius berberidis (Sethi and Swarup, 1968) is synonymized to M. hexagrammus (Sturhan, 1966); Ttjlenchorhynchus chonai Sethi and Swarup, 1968 is synonymized to T. triglyphus Seinhorst, 1963; Quinisulcius nilgiriensis (Seshadri et al., 1967) is synonymized to Q. acti (Hopper, 1959); and Tylenchorhynchus tener Erzhanova, 1964 is regarded a synonym of T.
    [Show full text]
  • Ecology and Pathogenicity of the Hoplolaimidae (Nemata) from the Sahelian Zone of West Mrica
    Fundam. appl. Nematol., 1995,18 (6), 513-522 Ecology and pathogenicity of the Hoplolaimidae (Nemata) from the sahelian zone of West Mrica. 8. Senegalonema sorghi Germani, Luc & Baldwin, 1984 and comparison with Rotylenchulus reniformis Linford & Oliveira, 1940 Pierre BAuJARD* and Bernard rvtARTINY ORSTOM, Laboratoire de Nématologie, B.P. 1386, Dakar, Sénégal. Accepted for publication 29 August 1994. Summary - The geographical distribution, host plants, population dynamics and vertical distribution were srudied for the nematode Senegalonema sorghi in Senegal. The observations of sorghum roots parasitized by S. sorghi showed the absence of gelatinous matrix and the presence of a shell around the marure females. The development of the female inside the roots induced the bursting and tearing of the cortical tissues of the roots. The factors influencing the multiplication rate and the effects of anhydrobio­ sis were srudied in the laboratory for S. sorghi and ROlylenchulus ren~formis. The results showed that the highest multiplication rates of both species were recorded at relatively low soil temperarure and high soil moisrure. Both species were able to enter anhydrobiosis during the dry season, with survival rates of 20-40 %. S. sorghi parasitized only wild and cropped cereals. During the dry season, it was under hydrobiotic conditions at depth in cropped soils and under anhydrobiosis in the upper layers of the soils under fal1ow. The restricted distribution of R. reniformis in the vegetable crops under irrigation might be explained by its narrow host range; ail other ecological characteristics were the same as for S. sorghi. Résum.é - Écologie et nocuité des Hoplolaimidae (Nemata) de la zone sahélienne de ['Afrique de l'Ouest.
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • Evaluation of Catenaria Anguillulae and Its Potential Use As a Biological Control Agent Of
    Evaluation of Catenaria anguillulae and its potential use as a biological control agent of Meloidogyne incognita, Heterodera glycines, and Rotylenchulus reniformis by David Robert Dyer A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 16, 2017 Copyright © 2017 David R. Dyer Approved by Dr. Kathy Lawrence, Chair, Professor of Entomology and Plant Pathology Dr. Jeffrey Coleman, Assistant Professor of Entomology and Plant Pathology Dr. Yucheng Feng, Professor of Crop, Soil and Environmental Science Dr. Edward Sikora, Extension Specialist Professor of Entomology and Plant Pathology Abstract The overall objectives of this study are 1) to isolate Catenaria sp. from nematode samples, grow them in pure culture, and determine the best culture media and incubation temperatures; 2) identify species of Catenaria found through morphological and molecular techniques; 3) test pathogenicity of Catenaria sp. on Rotylenchulus reniformis, Meloidogyne incognita, and Heterodera glycines in vitro to determine biological control potential; 4) evaluate biological control potential of isolated Catenaria sp. in greenhouse, microplot, and field settings. Catenaria sp. was isolated from R. reniformis and H. glycines and increased on 0.4% beef extract agar (BEA) plates. Sequencing of the internal transcribed spacer (ITS1) and ITS4 regions of Catenaria sp. DNA indicated that isolates of Catenaria sp. obtained from both H. glycines and R. reniformis shared a 95% identity with C. anguillulae. Growth tests were conducted on five different medium and BEA was the only media tested that supported growth of C. anguillulae. Six incubation temperatures ranging from 10-40°C indicated that C.
    [Show full text]
  • Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L
    Journal of Nematology 22(3):386-394. 1990. © The Society of Nematologists 1990. Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L. K. CARTA2 AND J. G. BALDWINs Abstract: Absence of the phasmid was demonstrated with the transmission electron microscope in immature third-stage (M3) and fourth-stage (M4) males and mature fifth-stage males (M5) of Heterodera schachtii, M3 and M4 of Verutus volvingentis, and M5 of Cactodera eremica. This absence was supported by the lack of phasmid staining with Coomassie blue and cobalt sulfide. All phasmid structures, except the canal and ampulla, were absent in the postpenetration second-stagejuvenile (]2) of H. schachtii. The prepenetration V. volvingentis J2 differs from H. schachtii by having only a canal remnant and no ampulla. This and parsimonious evidence suggest that these two types of phasmids probably evolved in parallel, although ampulla and receptor cavity shape are similar. Absence of the male phasmid throughout development might be associated with an amphimictic mode of reproduction. Phasmid function is discussed, and female pheromone reception ruled out. Variations in ampulla shape are evaluated as phylogenetic character states within the Heteroderinae and putative phylogenetic outgroup Hoplolaimidae. Key words: anaphimixis, ampulla, cell death, Cactodera eremica, Heterodera schachtii, Heteroderinae, parallel evolution, parthenogenesis, phasmid, phylogeny, ultrastructure, Verutus volvingentis. Phasmid sensory organs on the tails of phasmid openings in the males of most gen- secernentean nematodes are sometimes era within the plant-parasitic Heteroderi- notoriously difficult to locate with the light nae, except Meloidodera (24) and perhaps microscope (18). Because the assignment Cryphodera (10) and Zelandodera (43).
    [Show full text]
  • Diversidad De Nemátodos Fitoparásitos Asociados Al Cultivo De Maíz En El Municipio De Guasave, Sinaloa
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA Diversidad de nemátodos fitoparásitos asociados al cultivo de maíz en el municipio de Guasave, Sinaloa. TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA ULISES GONZÁLEZ GÜITRÓN GUASAVE, SINALOA; MÉXICO DICIEMBRE DE 2013 I II III RECONOCIMIENTO A PROYECTOS Y BECAS La investigación se realizó en los laboratorios de Nemátodos y Nutrición Vegetal pertenecientes al centro interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-SIN) del Instituto Politécnico Nacional (IPN). El trabajo de maestría estuvo asesorado por el Dr. Manuel Mundo Ocampo y el M.C. Jesús Ricardo Camacho Báez, contando con el apoyo otorgado por el Consejo Nacional de Ciencia y Tecnologia CONACyT, con número de CVU 418291. Se agradece el apoyo al programa Institucional de Formación de Investigadores (PIFI) con el proyecto “Búsqueda de nemátodos potencialmente entomopatógenos asociados al cultivo de maíz en el norte de Sinaloa (segunda etapa)” con clave 20131792. Así como el reconocimiento a INAPI SINALOA por su beca de terminación de tesis y a la Organización de Nematólogos de los Trópicos Americanos (ONTA) por su premio económico con el cual pude asistir al congreso número XLIV en Cancún, México. IV DEDICATORIA El presente trabajo está dedicado a dos personas muy especiales que quiero con todo mi corazón, que supieron hacer de mí una persona consiente y con valores. Las cuales me han ayudado a sobrellevar todo tipo de problemas y situaciones. Me refiero a mis padres Joel González Betancourt e Irma María Güitrón Padilla.
    [Show full text]
  • From Sahelian Zone of West Africa : 7. Helicotylenchus Dihystera
    Fundam. appl. Nemawl., 1995, 18 (6), 503-511 Ecology and pathogenicity of the Hoplolaimidae (Nemata) from the sahelian zone of West Africa. 7. Helicotylenchus dihystera (Cobb, 1893) Sher, 1961 and comparison with Helicotylenchus multicinctus (Cobb, 1893) Golden, 1956 Pierre BAuJARD* and Bernard MARTINY ORSTOM, Laboraloire de Nématologie, B.P. 1386, Dakar, Sénégal. Accepted for publication 29 August 1994. Summary - The geographical distribution and field host plants, population dynamics and vertical distribution were studied for the nematode Helicoly/enchus dihysr.era. The factors influencing the multiplication rate and the effects of anhydrobiosis were studied for H. dihysr.era and H. mullicinclus in the laboratory and showed that absence of H. mullicinClus from semi-arid tropics of West Africa might be explained by the effects ofhigh soil temperature on multiplication rate and low survival rate after soil desiccation during the dry season. The field and laboratory observations showed that anhydrobiosis might induce a strong effeet on the physiology of H. dihyslera, nematode numbers being higher after soil desiccation during the dry season. H. dihyslera appeared pathogenic to peanut and millet. Résumé - Écologie et nocuité des Hoplolaimidae (Nernata) de la zone sahélienrw de l'Afrique de l'Ouest. 7. Helico­ tylenchus dihystera (Cobb, 1893) Sher, 1961 et comparaison avec Helicotylenchus multicinctus (Cobb, 1893) Golden, 1956- La répartition géographique et les plantes hôtes, la dynamique des populations et la répartition verticale ont été étudiées pour le nématode Helicoly/enchus dihysr.era. Les facteurs influençant le taux de multiplication et les effets de l'anhydrobiose ont été étudiés au laboratoire pour H. dihystera et H.
    [Show full text]
  • Description of Hoplolaimus Bachlongviensis Sp. N.(Nematoda
    Biodiversity Data Journal 3: e6523 doi: 10.3897/BDJ.3.e6523 Taxonomic Paper Description of Hoplolaimus bachlongviensis sp. n. (Nematoda: Hoplolaimidae) from banana soil in Vietnam Tien Huu Nguyen‡‡, Quang Duc Bui , Phap Quang Trinh‡ ‡ Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam Corresponding author: Phap Quang Trinh ([email protected]) Academic editor: Vlada Peneva Received: 09 Sep 2015 | Accepted: 04 Nov 2015 | Published: 10 Nov 2015 Citation: Nguyen T, Bui Q, Trinh P (2015) Description of Hoplolaimus bachlongviensis sp. n. (Nematoda: Hoplolaimidae) from banana soil in Vietnam. Biodiversity Data Journal 3: e6523. doi: 10.3897/BDJ.3.e6523 ZooBank: urn:lsid:zoobank.org:pub:E1697C01-66CB-445B-9B70-8FB10AA8C37E Abstract Background The genus Hoplolaimus Daday, 1905 belongs to the subfamily Hoplolaimine Filipiev, 1934 of family Hoplolaimidae Filipiev, 1934 (Krall 1990). Daday established this genus on a single female of H. tylenchiformis recovered from a mud hole on Banco Island, Paraguay in 1905 (Sher 1963, Krall 1990). Hoplolaimus species are distributed worldwide and cause damage on numerous agricultural crops (Luc et al. 1990Robbins et al. 1998). In 1992, Handoo and Golden reviewed 29 valid species of genus Hoplolaimus Dayday, 1905 (Handoo and Golden 1992). Siddiqi (2000) recognised three subgenera in Hoplolaimus: Hoplolaimus (Hoplolaimus) with ten species, is characterized by lateral field distinct, with four incisures, excretory pore behind hemizonid; Hoplolaimus ( Basirolaimus) with 18 species, is characterized by lateral field with one to three incisures, obliterated, excretory pore anterior to hemizonid, dorsal oesophageal gland quadrinucleate; and Hoplolaimus (Ethiolaimus) with four species is characterized by lateral field with one to three incisures, obliterated; excretory pore anterior to hemizonid, dorsal oesophageal gland uninucleate (Siddiqi 2000).
    [Show full text]