Simulation of Car System with Cruise Control 1Ihedioha Ahmed C

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Car System with Cruise Control 1Ihedioha Ahmed C International Journal of Trend in Research and Development, Volume 3(1), ISSN: 2394-9333 www.ijtrd.com Simulation of Car System with Cruise Control 1Ihedioha Ahmed C. and 2Iroegbu Chibuisi, 1Enugu State University of Science and Technology Enugu, Nigeria 2Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria Abstract: In this paper, simulation of car system which influences the throttle and thus the force with cruise control is presented. The purpose of generated by the engine [2]. cruise control is to keep the velocity of a car A schematic picture is shown in Figure 1 constant. The driver drives the car at the desired speed, the cruise control system is activated by pushing a button and the system then keeps the speed constant. The result of the Simulation of a car with cruise control for a step change in the slope of the road with relative damping 휏 =1 and 휔0 =0.05 (dotted), 휔0 =0.1 (full) and 휔0 =0.2 (dashed) shows a velocity error when the slope of the road is suddenly increased by 4%. Keywords: Car System, Cruise Control, Damping, Velocity Error. I. INTRODUCTION Science has traditionally been concerned with describing nature using mathematical symbols and Figure 1: Schematic diagram of a Car on a Sloping equations. Applied mathematicians have Road traditionally been studying the sort of equations of interest to scientists. More recently, engineers have II. MODELING come onto the scene with the aim of manipulating or controlling various processes. They introduce We will start by developing a mathematical model of (additional) control variables and adjustable the system. The mathematical model should tell how parameters to the mathematical models. In this way, the velocity of the car is influenced by the throttle they go beyond the traditions of science and and the slope of the road. mathematics, yet use the tools of science and The model of the system is by a momentum balance mathematics and, indeed, provide challenges for the [3]. The major part of the momentum is the product next generation of mathematicians and scientists [1]. of the velocity v and the mass m of the car. There are The purpose of cruise control is to keep the velocity also momenta stored in the engine, in terms of the of a car constant. The driver drives the car at the rotation of the crank shaft and the velocities of the desired speed, the cruise control system is activated cylinders, but these are much smaller than mv. A by pushing a button and the system then keeps the block diagram of the system is shown in Figure 2. speed constant. The major disturbance comes from changes of the slope of the road which generates Let 휃 denote the slope of the road, the momentum forces on the car due to gravity. There are also balance can be written as disturbances due to air and rolling resistance. The 푑푣 cruise control system measures the difference 푚푑푡 +cv = F - mg 휃 ……………………(1) between the desired and the actual velocity and where the term cv describes the momentum loss due generates a feedback signal which attempts to keep to air resistance and rolling and F is the force the error small in spite of changes in the slope of the generated by the engine. The retarding force due to road. The feedback signal is sent to an actuator the slope of the road should similarly be proportional to the sine of the angle but we have approximated IJTRD | Jan - Feb 2016 Available [email protected] 46 International Journal of Trend in Research and Development, Volume 3(1), ISSN: 2394-9333 www.ijtrd.com sin휃 ≈ 휃 . The consequence of the approximations It is convenient to differentiate (3) to avoid dealing will be discussed later. It is also assumed that the both with integrals and derivatives. Differentiating force F developed by the engine is proportional to the process model (2) the term du/dt can be the signal u sent to the throttle [5]. eliminated and we find the following equation that describes the closed loop system 푑2푣 푑푒 푑휃 + (0.02 +k) + k1e = 10 ………….(4) 푑푡2 푑푡 푑푡 We can first observe that if q and e are constant the error is zero. This is no surprise since the controller has integral action [7]. To understand the effects of the controller parameters k and ki we can make an analogy between (4) and the differential equation for a mass spring damper system 푑2푥 푑푥 푀 2 + 퐷 +퐾푥 = 0 푑푡 푑푡 Figure 2: Block Diagram of a Car with Cruise We can thus conclude that parameter k influences Control [4] damping and that ki influences stiffness. Introducing parameters for a particular car, an Audi The closed loop system (4) is of second order and it in fourth gear, the model becomes has the characteristic polynomial 2 푑푣 푠 + (0.02 + k)s +푘푖 …………………………(5) +0.02v = u - 10 휃 ……………………….(2) 푑푡 We can immediately conclude that the roots of this polynomial can be given arbitrary values by where the control signal is normalized to be in the choosing the controller parameters properly. To find interval 0≤ u≤1, where u=1 corresponds to full reasonable values we compare the characteristic throttle. The model implies that with full throttle in polynomial with the characteristic polynomial of the fourth gear the car cannot climb a road that is steeper normalized second order polynomial than 10%, and that the maximum speed in 4th gear 2 2 on a horizontal road is v =1/0.02 = 50 m/s (180 푠 + 2휏휔0 + 휔0 ……………………………..(6) km/hour). where 휏 denotes relative damping and 휔0 is the Since it is desirable that the controller should be able undamped natural frequency. to maintain constant speed during stationary The parameter 휔0 gives response speed, and 휏 conditions it is natural to choose a controller with determines the shape of the response [8]. Comparing integral action. A PI controller is a reasonable the coefficients of the closed loop characteristic choice. Such a controller can be described by polynomial (5) with the standard second order 푡 polynomial (6) we find that the controller parameters U = k(vr – v) + ki (푣 − 푣 휏 푑휏 …………….(3) 0 푟 are given by: To understand how the cruise control system works 푘 = 2휏휔 − 0.02 ……………………………(7) we will derive the equations for the closed loop 0 2 systems described by Equations (2) and (3) Since the 푘푖 = 휔0 effect of the slope on the velocity is of primary interest we will derive an equation that tells how the III. RESULT AND DISCUSSION velocity error e = v − v depends on the slope of the r A. Result road [6]. Assuming that vr is constant we find that The result of the Simulation of a car with cruise control for a step change in the slope of the road is 푑푣 푑푒 푑2푣 푑2푒 = - , = - shown in figures 3 and 4. 푑푡 푑푡 푑푡2 푑푡2 IJTRD | Jan - Feb 2016 Available [email protected] 47 International Journal of Trend in Research and Development, Volume 3(1), ISSN: 2394-9333 www.ijtrd.com there is only one parameter 휔0 that has to be determined. The selection of this parameter is a compromise between response speed and control actions. This is illustrated in Figure 4 which shows the velocity error and the control signal for a simulation where the slope of the road suddenly changes by 4%. Notice that the largest velocity error decreases with increasing 휔0, but also that the control signal increases more rapidly. In the simple model (1) it was assumed that the force responded instantaneously to the throttle. For rapid changes there may be additional dynamics that has to be accounted for. There are also physical limitations to the rate of change of the force. These limitations, which are not accounted for in the simple model (1), limit the admissible value of 휔0. Figure 3 shows the velocity error and the control signal for a few values of 휔0. A reasonable choice of 휔0 is in the range of 0.1 to 0.2. The performance of the cruise control system can be evaluated by comparing the behaviors of cars with and without Figure 3: Simulation of a car with cruise control for cruise control. This is done in Figure 4 which shows a step change in the slope of the road. The the velocity error when the slope of the road is controllers are designed with relative damping 휏 =1 suddenly increased by 4%. Notice the drastic and 휔0 =0.05 (dotted), 휔0 =0.1 (full) and 휔0 =0.2 difference between the open and closed loop (dashed). systems. CONCLUSION A cruise control system contains much more than an implementation of the PI controller given by (3). The human machine interface is particularly important because the driver must be able to activate and deactivate the system and to change the desired velocity. With the chosen parameters 휔0 =0.2 and 휏 =1 we have 2 휏휔0= 0.2 and it follows from (7) that the parameter c = 0.02 has little influence on the behavior of the closed loop system since it is an order of magnitude smaller than 2 휏휔0. Therefore it is not necessary to have a very precise value of this Figure 4: Simulation of a car with (solid line) and parameter. This is an illustration of an important and without cruise control (dashed Line) for a step surprising property of feedback, namely that change of 4% in the slope of the road. The controller feedback systems can be designed based on is designed for 휔0 =0.1 and 휏 =1.
Recommended publications
  • Future Outlook in Commercial Vehicles
    ADAS In Commercial Pulse Q2’20 Vehicles What’s inside ? 1. Activities of 4 key commercial vehicle manufacturers in ADAS and higher autonomy • Tesla, Daimler Trucks, Traton and Volvo Trucks Image: Daimler Freightliner Inspiration Truck Activities of 4 key emerging players in autonomous CVs • Embark, TuSimple, Nikola Motors, Einride 2. Regulations impacting autonomous CVs in the U.S & EU 3. Future outlook THEMES AND Themes covered in this scope Key Takeaways . Players are focusing on Level-4 technologies KEY TAKEAWAYS Activities of 4 key commercial vehicle that take over on the highways, aiming at manufacturers in ADAS & higher autonomy improving safety and gaining greater fuel o Tesla efficiency. e.g. from platooning. IN ADAS in CVs o Daimler Trucks . Collaborative business models and o Traton investments could accelerate L4-L5 capabilities o Volvo Trucks in the near future and find use cases in last-mile delivery, construction and mining areas Today, we are seeing vehicle automation quickly becoming available throughout the Activities of 4 key emerging players in commercial vehicle market with significant autonomous commercial vehicles . Players like Embark plans to skip Level 3 and go interest and investment by the players. o Embark straight to Level 4, while TuSimple has ambitious o TuSimple plans to scale up Level 4 freight network by 2021 o Nikola Motors . Hydrogen powered autonomous trucks could gain ADAS functionalities such as adaptive cruise o Einride traction and fuel the freight chain control (ACC), automatic emergency braking (AEB) and lane keeping assist (LKA) are . Currently, no federal regulation on autonomous accelerating for commercial vehicles. Truck Regulation impacting autonomous commercial vehicles in the U.S and EU trucking technology exists in the U.S.
    [Show full text]
  • State of the Art of Adaptive Cruise Control and Stop and Go Systems
    1st AUTOCOM Workshop on Preventive and Active Safety Systems for Road Vehicles State of the Art of Adaptive Cruise Control and Stop and Go Systems Emre Kural, Tahsin Hacıbekir, and Bilin Aksun Güvenç Department of Mechanical Engineering, østanbul Technical University, Gümüúsuyu, Taksim, østanbul, TR-34437, Turkey Abstract—This paper presents the state of the art of Number of Traffic Accidents in European Country Adaptive Cruise Control (ACC) and Stop and Go systems as x1000 well as Intelligent Transportation Systems enhanced with inter vehicle communication. The sensors used in these 400 systems and the level of their current technology are introduced. Simulators related to ACC and Stop and Go 300 (S&G) systems are also surveyed and the MEKAR 200 simulator is presented. Finally, future trends of ACC and Stop and Go systems and their advantages are emphasized. 100 0 I. INTRODUCTION y in e ly K y n a c a U e a n It rk a u New trends in automotive technology result in new rm Sp r e F T systems to produce safer and more comfortable vehicles. G Many driver assistant systems are introduced by automotive manufacturers in order to prevent a possible Figure 1. Traffic Accident Statistics in Europe accident from happening either by intervening in the And as a result, the driver’s routine interventions are control of the vehicle temporarily or by warning the lessened and due to a more controlled driving, fuel driver audibly and visually. consumption will be reduced. On the other hand, the The key reason as to why researchers focus on the automation of highways will also allow an increase in the subject of producing safer cars is related to the statistics number of vehicles traveling on roads without causing that expose the serious consequences of accidents.
    [Show full text]
  • A Hierarchical Control System for Autonomous Driving Towards Urban Challenges
    applied sciences Article A Hierarchical Control System for Autonomous Driving towards Urban Challenges Nam Dinh Van , Muhammad Sualeh , Dohyeong Kim and Gon-Woo Kim *,† Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University, Cheongju-si 28644, Korea; [email protected] (N.D.V.); [email protected] (M.S.); [email protected] (D.K.) * Correspondence: [email protected] † Current Address: Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea. Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: In recent years, the self-driving car technologies have been developed with many successful stories in both academia and industry. The challenge for autonomous vehicles is the requirement of operating accurately and robustly in the urban environment. This paper focuses on how to efficiently solve the hierarchical control system of a self-driving car into practice. This technique is composed of decision making, local path planning and control. An ego vehicle is navigated by global path planning with the aid of a High Definition map. Firstly, we propose the decision making for motion planning by applying a two-stage Finite State Machine to manipulate mission planning and control states. Furthermore, we implement a real-time hybrid A* algorithm with an occupancy grid map to find an efficient route for obstacle avoidance. Secondly, the local path planning is conducted to generate a safe and comfortable trajectory in unstructured scenarios. Herein, we solve an optimization problem with nonlinear constraints to optimize the sum of jerks for a smooth drive. In addition, controllers are designed by using the pure pursuit algorithm and the scheduled feedforward PI controller for lateral and longitudinal direction, respectively.
    [Show full text]
  • AUTONOMOUS VEHICLES the EMERGING LANDSCAPE an Initial Perspective
    AUTONOMOUS VEHICLES THE EMERGING LANDSCAPE An Initial Perspective 1 Glossary Abbreviation Definition ACC Adaptive Cruise Control - Adjusts vehicle speed to maintain safe distance from vehicle ahead ADAS Advanced Driver Assistance System - Safety technologies such as lane departure warning AEB Autonomous Emergency Braking – Detects traffic situations and ensures optimal braking AUV Autonomous Underwater Vehicle – Submarine or underwater robot not requiring operator input AV Autonomous Vehicle - vehicle capable of sensing and navigating without human input CAAC Cooperative Adaptive Cruise Control – ACC with information sharing with other vehicles and infrastructure CAV Connected and Autonomous Vehicles – Grouping of both wirelessly connected and autonomous vehicles DARPA US Defense Advanced Research Projects Agency - Responsible for the development of emerging technologies EV Electric Vehicle – Vehicle that used one or more electric motors for propulsion GVA Gross Value Added - The value of goods / services produced in an area or industry of an economy HGV Heavy Goods Vehicle – EU term for any truck with a gross combination mass over 3,500kg (same as US LGV) HMI Human Machine Interface – User interface between a vehicle and the driver / passenger IATA International Air Transport Association - Trade association of the world’s airlines LIDAR Light Detection and Ranging - Laser-based 3D scanning and sensing MaaS Mobility as a Service - Mobility solutions that are consumed as a service rather than purchased as a product ODD Operational Design
    [Show full text]
  • ADVANCED DRIVER ASSISTANCE TECHNOLOGY NAMES AAA’S Recommendation for Common Naming of Advanced Safety Systems
    JANUARY 2019 ADVANCED DRIVER ASSISTANCE TECHNOLOGY NAMES AAA’s recommendation for common naming of advanced safety systems NewsRoom.AAA.com Advanced Driver Assistance Technology Names (this page intentionally left blank) © 2019 American Automobile Association, Inc. 2 Advanced Driver Assistance Technology Names Abstract Advanced Driver Assistance Systems have become increasingly prevalent on new vehicles. In fact, at least one ADAS feature is available on 92.7% of new vehicles available in the U.S. as of May 2018.1 Not only are these advanced driver assistance systems within financial reach of many new car consumers (about $1,950 for the average ADAS bundle2), they also have the potential to avoid or mitigate the severity of a crash. However, the terminology used to describe them varies widely and often seems to prioritize marketing over clarity. The lack of standardized names for automotive systems adds confusion for motorists when researching and using advanced safety systems. The intent of this paper is to create a dialog with the automotive industry, safety organizations and legislators about the need for common naming for advanced driver assistance systems. Within this report, AAA is proposing a set of standardized technology names for use in describing advanced safety systems. AAA acknowledges that this is a dynamic environment, and that further input from stakeholders and consumer research will further refine this recommendation. To date, automakers have devised their own branded technology names which, for example, has resulted in twenty unique names for adaptive cruise control and nineteen different names for lane keeping assistance (section 3.2) alone. A selection of these names is shown in Figure 1.
    [Show full text]
  • Safety of Autonomous Vehicles
    Hindawi Journal of Advanced Transportation Volume 2020, Article ID 8867757, 13 pages https://doi.org/10.1155/2020/8867757 Review Article Safety of Autonomous Vehicles Jun Wang,1 Li Zhang,1 Yanjun Huang,2 and Jian Zhao 2 1Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS 39762, USA 2Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada Correspondence should be addressed to Jian Zhao; [email protected] Received 1 June 2020; Revised 3 August 2020; Accepted 1 September 2020; Published 6 October 2020 Academic Editor: Francesco Bella Copyright © 2020 Jun Wang et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autonomous vehicle (AV) is regarded as the ultimate solution to future automotive engineering; however, safety still remains the key challenge for the development and commercialization of the AVs. *erefore, a comprehensive understanding of the de- velopment status of AVs and reported accidents is becoming urgent. In this article, the levels of automation are reviewed according to the role of the automated system in the autonomous driving process, which will affect the frequency of the disengagements and accidents when driving in autonomous modes. Additionally, the public on-road AV accident reports are statistically analyzed. *e results show that over 3.7 million miles have been tested for AVs by various manufacturers from 2014 to 2018. *e AVs are frequently taken over by drivers if they deem necessary, and the disengagement frequency varies significantly from 2 ×10−4 to 3 disengagements per mile for different manufacturers.
    [Show full text]
  • RESULTS RESULTS RESULTS DISCUSSION Human Factors of Advanced Driver Assistance Systems DEMOGRAPHICS Contact Information
    Contact Information Know It By Name: Human Factors of ADAS Design Kelly Funkhouser University of Utah Graduate Student Kelly Funkhouser, Elise Tanner, & Frank Drews [email protected] https://www.linkedin.com/in/kelly-funkhouser/ Human Factors of Advanced Driver RESULTS RESULTS RESULTS DISCUSSION Assistance Systems Terminology in Current Consumer Vehicles Participants ranked their trust in each of Terminology Terms non-owners chose to describe features the SAE Levels of Automation Terminology Scale -5 (Do Not Trust) to +5 (Completely Trust) ADAS Features Human Factors Principles for ADAS Design: Misinterpretation resulting from ambiguous terminology remains a Findings There were no significant differences between pressing concern in the design of novel technology. The National Active Active Active Reactive Warning Warning Levels 0-4 ● Use driver chosen terminology Reactive Function ● Use descriptive terminology Highway Traffic Safety Administration (NHTSA) suggests Function Function Function Function Alert Alert There was a significant difference between Levels 4 and 5 ● Do not use words that have prior connotations or meanings manufacturers of highly automated vehicles follow Human Factors Both continuously and Systems-Engineering principles during the design and validation keeps centered t(35) = 3.01, p < 0.01 ● Use standardized/consistent/common terminology Continuously Nudges back into lane when Gives signal when car is Gives signal when Moves the car back into processes to reduce known safety risks. As novel automation between lane lines Adjusts speed/distance keeps centered your car is crossing over crossing over lane another car is lane if another car is and adjusts from car in front Recommended Terminology: technologies emerge in the automobile industry, new system designs between lane lines lane marker marker occupying blind spot occupying blind spot Participants rated their trust in societal speed/distance and terminology are introduced.
    [Show full text]
  • 2018 Jeep Cherokee Quick Reference Guide
    2018 CHEROKEE QUICK REFERENCE GUIDE SPEED CONTROL Speed Control To Activate To Increase Speed When engaged, the Speed Control takes over Push the on/off button. To turn the system off, When the Speed Control is set, you can in- push the on/off button a second time. The crease speed by pushing the SET (+) button. accelerator operations at speeds greater than system should be turned off when not in use. 25 mph (40 km/h). To Decrease Speed To Set A Desired Speed When the Speed Control is set, you can de- Turn the Speed Control on. When the vehicle has crease speed by pushing the SET (-) button. reached the desired speed, push the SET (+) or To Accelerate For Passing SET (-) button and release. Release the accelera- tor and the vehicle will operate at the selected Press the accelerator as you would normally. speed. When the pedal is released, the vehicle will return to the set speed. To Deactivate For further information, and applicable warnings A soft tap on the brake pedal, pushing the CANC and cautions, please refer to the Owner’s Manual at button, or normal brake pressure while slowing the www.mopar.com/en-us/care/owners-manual.html vehicle will deactivate Speed Control without eras- (U.S. Residents) or www.owners.mopar.ca (Ca- ing the set speed memory. Pushing the on/off nadian Residents). button or turning the ignition switch OFF erases the set speed in memory. Speed Control Switches 1 — Push Cancel To Resume Speed 2 — Push Set+/Accel To resume a previously set speed, push the RES 3 — Push Resume button and release.
    [Show full text]
  • The Future of Autonomous Vehicles 2020
    The Future of Autonomous Vehicles Autonomous of Future The Global Insights gained from Multiple Expert Discussions Multiple from gained Insights Global THE FUTURE OF AUTONOMOUS VEHICLES Global Insights gained from Multiple Expert Discussions 1 Glossary Abbreviation Definition ACC Adaptive Cruise Control - Adjusts vehicle speed to maintain safe distance from vehicle ahead ADS Driving System - Integrated performance of decision-making and operation of vehicle by machine ADAS Advanced Driver Assistance System - Safety technologies such as lane departure warning ADSE Automated Driving System Entity – Legal entity responsible for the ADS AEB Autonomous Emergency Braking – Detects traffic situations and ensures optimal braking AUV Autonomous Underwater Vehicle – Submarine or underwater robot not requiring operator input AV Autonomous Vehicle - vehicle capable of sensing and navigating without human input CAAC Cooperative Adaptive Cruise Control – ACC with information sharing with other vehicles and infrastructure CAV Connected and Autonomous Vehicles – Grouping of both wirelessly connected and autonomous vehicles DARPA US Defense Advanced Research Projects Agency - Responsible for the development of emerging technologies DDT Dynamic Driving Task – Operation functions that form part of driving the vehicle DSRC Dedicated Short-Range Communications - Wireless communication channels specifically designed for automotive use EV Electric Vehicle – Vehicle that used one or more electric motors for propulsion GSR General Safety Regulation – European
    [Show full text]
  • HLDI Bulletin | Vol 32, No
    Highway Loss Data Institute Bulletin Vol. 32, No. 22 : September 2015 Mazda collision avoidance features This is the second report examining collision avoidance features offered by Mazda. In 2011, the Highway Loss Data Institute (HLDI, 2011) performed an initial look at three collision avoidance features — Adaptive Front Lighting System, Blind Spot Monitoring, and a back-up camera — offered by Mazda on model year 2007–10 vehicles. This study updates and expands the loss results for these features and examines several new features introduced on model year 2014 vehicles. These features include front crash prevention technologies such as Adaptive Cruise Control, Forward Obstruction Warning, and Mazda’s Smart City Brake Support as well as Lane Departure Warning and Rear Cross Traffic Alert. The updated results for Adaptive Front Lighting System, Blind Spot Monitoring, and the back-up camera indicate significant reductions for property damage liability claim frequencies and some injury coverage frequencies. Results for the new systems indicate strong potential for Mazda’s Smart City Brake Support with significant reductions in property damage liability claim frequency. Bodily injury liability claim frequency was also reduced, but the result was not significant. Results for the remaining features were inconclusive, as limited loss data are available for vehicles equipped with these systems. The table below summarizes the estimated changes in claim frequency for Mazda’s collision avoidance features. Statistically significant estimates are bolded.
    [Show full text]
  • Dutch Reality Putting ITS Promises Into Practice
    Smart Mobility – Dutch reality Putting ITS promises into practice The ITS promise is to make transport smarter, safer, more efficient and more sustainable. The demonstrations during the ITS European Congress 2019, at the Automotive Campus in Helmond as well as at the Evoluon in Eindhoven, show the current status of bringing ITS promises into practice. It ranges from commercial available automated vehicles, to on-going new research and development, to nation-wide rollout of dedicated infrastructure in the Netherlands and Europe. It is a complex transition, in which not only technology has to work together but above all people who have to make it a success. We are proud to show you how joined effort has resulted in this ITS dedicated demo-site with 19 demonstrations. Come and experience the ITS reality. Autonomous vehicles for public transport When thinking of autonomous vehicles, it is not only about cars and trucks in development, but also about public transport. At the Automotive Campus demo location, two companies offer you the ability to experience their automated mini-buses. - The company 2getthere will show their 3rd generation vehicle. It is able to transport up to 26 people operates bi-directional, has doors on both side, has accurate docking, but above all operates at high speed with a maximum speed up to 60 km/h. This vehicle is an upgrade of their ParkShuttle in Rotterdam, which becomes the unique link between the Rotterdam metro network and the Waterbus. - The company Navya will show their 100% autonomous and electric vehicle in urban environment in the Dutch province of Groningen.
    [Show full text]
  • Autonomous Cars: Past, Present and Future
    Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public.
    [Show full text]