AUTONOMOUS VEHICLES the EMERGING LANDSCAPE an Initial Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Pandemic Reflections: Future Mobility COVID-19’S Potential Impact on the New Mobility Ecosystem
THEMATIC INSIGHTS Post-Pandemic Reflections: Future Mobility COVID-19’s potential impact on the new mobility ecosystem msci.com msci.com 1 Contents 04 Mobility-as-a-Service and the COVID-19 shock 06 Growing Pains in the Future Mobility Market 16 Mobility Services: Expansion and Acceleration 18 COVID-19: A Catalyst for Autonomous Delivery? 2 msci.com msci.com 3 Future Mobility A growing database collated by Neckermann Strategic Advisors has over Mobility-as- 700 public and private companies involved with different elements of the autonomous Mobility-as-a-Service (MaaS) value chain. a-Service A list that doesn’t yet include all the producers of electric, two-wheeled and public transport that contribute to the full and the mobility ecosystem. In the 1910s, the automotive industry was COVID-19 shock vast, and the rising tide was lifting every boat, albeit not profitably. However, by the time the Roaring Twenties came to an end in Even prior to the COVID-19 crisis, we discussed in our first Thematic 1929, the number of US auto manufacturers Insight1 how the world might be in the midst of the largest transformation had already fallen to 44, only to consolidate in mobility since the advent of the automobile some 120 years ago. Will much further after the Great Depression. the current pandemic prove to be a system shock that accelerates the It is, of course, tempting to see a parallel demise of inflexible and unprofitable business models and acts as a to the last five years in mobility. Just prior catalyst for the growth of more digital and service-oriented businesses in to the COVID-19 crisis, there were initial the mobility space? How might industry-wide headwinds affect the new signs of stress in this tapestry of privately- business models and technologies at least in the short-term? funded companies in the Future Mobility New industries naturally go through a series of iterations before becoming ecosystem. -
Future Outlook in Commercial Vehicles
ADAS In Commercial Pulse Q2’20 Vehicles What’s inside ? 1. Activities of 4 key commercial vehicle manufacturers in ADAS and higher autonomy • Tesla, Daimler Trucks, Traton and Volvo Trucks Image: Daimler Freightliner Inspiration Truck Activities of 4 key emerging players in autonomous CVs • Embark, TuSimple, Nikola Motors, Einride 2. Regulations impacting autonomous CVs in the U.S & EU 3. Future outlook THEMES AND Themes covered in this scope Key Takeaways . Players are focusing on Level-4 technologies KEY TAKEAWAYS Activities of 4 key commercial vehicle that take over on the highways, aiming at manufacturers in ADAS & higher autonomy improving safety and gaining greater fuel o Tesla efficiency. e.g. from platooning. IN ADAS in CVs o Daimler Trucks . Collaborative business models and o Traton investments could accelerate L4-L5 capabilities o Volvo Trucks in the near future and find use cases in last-mile delivery, construction and mining areas Today, we are seeing vehicle automation quickly becoming available throughout the Activities of 4 key emerging players in commercial vehicle market with significant autonomous commercial vehicles . Players like Embark plans to skip Level 3 and go interest and investment by the players. o Embark straight to Level 4, while TuSimple has ambitious o TuSimple plans to scale up Level 4 freight network by 2021 o Nikola Motors . Hydrogen powered autonomous trucks could gain ADAS functionalities such as adaptive cruise o Einride traction and fuel the freight chain control (ACC), automatic emergency braking (AEB) and lane keeping assist (LKA) are . Currently, no federal regulation on autonomous accelerating for commercial vehicles. Truck Regulation impacting autonomous commercial vehicles in the U.S and EU trucking technology exists in the U.S. -
Paving the Way for Self-Driving Vehicles”
June 13, 2017 The Honorable John Thune, Chairman The Honorable Bill Nelson, Ranking Member U.S. Senate Committee on Commerce, Science & Transportation 512 Dirksen Senate Office Building Washington, DC 20510 RE: Hearing on “Paving the Way for Self-Driving Vehicles” Dear Chairman Thune and Ranking Member Nelson: We write to your regarding the upcoming hearing “Paving the Way for Self-Driving Vehicles,”1 on the privacy and safety risks of connected and autonomous vehicles. For more than a decade, the Electronic Privacy Information Center (“EPIC”) has warned federal agencies and Congress about the growing risks to privacy resulting from the increasing collection and use of personal data concerning the operation of motor vehicles.2 EPIC was established in 1994 to focus public attention on emerging privacy and civil liberties issues. EPIC engages in a wide range of public policy and litigation activities. EPIC testified before the House of Representatives in 2015 on “the Internet of Cars.”3 Recently, EPIC 1 Paving the Way for Self-Driving Vehicles, 115th Cong. (2017), S. Comm. on Commerce, Science, and Transportation, https://www.commerce.senate.gov/public/index.cfm/pressreleases?ID=B7164253-4A43- 4B70-8A73-68BFFE9EAD1A (June 14, 2017). 2 See generally EPIC, “Automobile Event Data Recorders (Black Boxes) and Privacy,” https://epic.org/privacy/edrs/. See also EPIC, Comments, Docket No. NHTSA-2002-13546 (Feb. 28, 2003), available at https://epic.org/privacy/drivers/edr_comments.pdf (“There need to be clear guidelines for how the data can be accessed and processed by third parties following the use limitation and openness or transparency principles.”); EPIC, Comments on Federal Motor Vehicle Safety Standards; V2V Communications, Docket No. -
Autonomous Vehicles on the Road from the Perspective of a Manufacturer's Liability for Damages
Autonomous Vehicles on the Road from the Perspective of a Manufacturer's Liability for Damages IUC International Maritime and Transport Law Course International Maritime and Transport Law – Transport Law de Lege Ferenda Dubrovnik, 9 September 2020 Contents 1. Introduction - definitions, perspective 2. Challenges - current set of rules; AV-AV, AV-CV, AV-rest 3. Opportunities - vision for future 4. Summary Conclusion Is there a need for more regulation in order to help the production of AVs and mitigate damages? 1. AVs to be treated as conventional vehicles, i.e. as any other product, movable 2. Treat them as elevators/lifts or as autopilot technology 3. New legal framework Current legal framework • National regulations • EU strategies/investments • Independent bodies/entities and their recommendations • Good practices What is an AV? • a vehicle enabled with technology that has the capability of operating or driving the vehicle without the active control or monitoring of a natural person - Maurice Schellekens, Self-driving cars and the chilling effect of liability law • 3 elements: 1. Means (AI or similar technology) 2. Purpose of the means 3. Way of operating the means (active control or monitoring of a human person) • AV as any other movable Waymo’s self driving car, 2020 Source: https://www.google.com/search?q=Waymo&rlz=1C1GCEA_enHR912HR912&sxsrf=ALeKk00G8P_y2Ik0neIaDNxJlqcjKMQBlw:1599407756496&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjR67SZ8tTrAhXSTcAKHZATCDQ Q_AUoAXoECBgQAw&biw=1366&bih=657#imgrc=z71dtWbxBXnwgM Tesla model 3, 2020 Source: -
Model Based Systems Engineering Approach to Autonomous Driving
DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Model Based Systems Engineering Approach to Autonomous Driving Application of SysML for trajectory planning of autonomous vehicle SARANGI VEERMANI LEKAMANI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Author Sarangi Veeramani Lekamani [email protected] School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Place for Project Sodertalje, Sweden AVL MTC AB Examiner Ingo Sander School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Supervisor George Ungureanu School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Industrial Supervisor Hakan Sahin AVL MTC AB Abstract Model Based Systems Engineering (MBSE) approach aims at implementing various processes of Systems Engineering (SE) through diagrams that provide different perspectives of the same underlying system. This approach provides a basis that helps develop a complex system in a systematic manner. Thus, this thesis aims at deriving a system model through this approach for the purpose of autonomous driving, specifically focusing on developing the subsystem responsible for generating a feasible trajectory for a miniature vehicle, called AutoCar, to enable it to move towards a goal. The report provides a background on MBSE and System Modeling Language (SysML) which is used for modelling the system. With this background, an MBSE framework for AutoCar is derived and the overall system design is explained. This report further explains the concepts involved in autonomous trajectory planning followed by an introduction to Robot Operating System (ROS) and its application for trajectory planning of the system. The report concludes with a detailed analysis on the benefits of using this approach for developing a system. -
Impacts of Automated Vehicles and Shared Mobility on Transit and Partnership Opportunities
NCHRP Project 20-113F Preparing for Automated Vehicles and Shared Mobility: State-of-the-Research Topical Paper #7 IMPACTS OF AUTOMATED VEHICLES AND SHARED MOBILITY ON TRANSIT AND PARTNERSHIP OPPORTUNITIES September 21, 2020 Transportation Research Board 500 5th Street NW Washington, DC 20001 www.trb.org Prepared by: For: The views expressed in this document are those of the author(s), and are intended to help inform and stimulate discussion. The document is not a report of the National Academies of Sciences, Engineering, and Medicine and has not been subjected to its review procedures. 1 Introduction 1.1. Background In coordination with the National Cooperative Highway Research Program (NCHRP), the TRB Forum on Preparing for Automated Vehicles and Shared Mobility (Forum) has developed nine (9) Topical Papers to support the work of the Forum (Project). The mission of the Forum is to bring together public, private, and research organizations to share perspectives on critical issues for deploying AVs and shared mobility. This includes discussing, identifying, and facilitating fact-based research needed to deploy these mobility focused innovations and inform policy to meet long-term goals, including increasing safety, reducing congestion, enhancing accessibility, increasing environmental and energy sustainability, and supporting economic development and equity. IMPACTS OF AUTOMATED VEHICLES AND SHARED MOBILITY ON TRANSIT AND PARTNERSHIP OPPORTUNITIES PAGE 2 The Topical Areas covered as part of the Project include the following: The goals -
The Rise of Mobility As a Service Reshaping How Urbanites Get Around
Issue 20 | 2017 Complimentary article reprint The rise of mobility as a service Reshaping how urbanites get around By Warwick Goodall, Tiffany Dovey Fishman, Justine Bornstein, and Brett Bonthron Illustration by Traci Daberko Breakthroughs in self-driving cars are only the beginning: The entire way we travel from point A to point B is changing, creating a new ecosystem of personal mobility. The shift will likely affect far more than transportation and automakers—industries from insurance and health care to energy and media should reconsider how they create value in this emerging environment. Deloitte offers a suite of services to help clients tackle Future of Mobility- related challenges, including setting strategic direction, planning operating models, and implementing new operations and capabilities. Our wide array of expertise allows us to become a true partner throughout an organization’s comprehensive, multidimensional journey of transformation. About Deloitte Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee, and its network of member firms, each of which is a legally separate and independent entity. Please see http://www/deloitte.com/about for a detailed description of the legal structure of Deloitte Touche Tohmatsu Limited and its member firms. Please see http://www.deloitte.com/us/about for a detailed description of the legal structure of the US member firms of Deloitte Touche Tohmatsu Limited and their respective subsidiaries. Certain services may not be available to attest clients under the rules and regulations of public accounting. Deloitte provides audit, tax, consulting, and financial advisory services to public and private clients spanning multiple industries. -
Waymo Rolls out Autonomous Vans Without Human Drivers 7 November 2017, by Tom Krisher
Waymo rolls out autonomous vans without human drivers 7 November 2017, by Tom Krisher get drowsy, distracted or drunk. Google has long stated its intent to skip driver- assist systems and go directly to fully autonomous driving. The Waymo employee in the back seat won't be able to steer the minivan, but like all passengers, will be able to press a button to bring the van safely to a stop if necessary, Waymo said. Within a "few months," the fully autonomous vans will begin carrying volunteer passengers who are now taking part in a Phoenix-area test that includes use of backup drivers. Waymo CEO John Krafcik, who was to make the In this Sunday, Jan. 8, 2017, file photo, a Chrysler announcement Tuesday at a conference in Pacifica hybrid outfitted with Waymo's suite of sensors Portugal, said the company intends to expand the and radar is shown at the North American International testing to the entire 600-square-mile Phoenix area Auto Show in Detroit. Waymo is testing vehicles on and eventually bring the technology to more cities public roads with only an employee in the back seat. The around the world. It's confident that its system can testing started Oct. 19 with an automated Chrysler Pacifica minivan in the Phoenix suburb of Chandler, Ariz. handle all situations on public roads without human It's a major step toward vehicles driving themselves intervention, he said. without human backups on public roads. (AP Photo/Paul Sancya, File) "To have a vehicle on public roads without a person at the wheel, we've built some unique safety features into this minivan," Krafcik said in remarks prepared for the conference. -
State of the Art of Adaptive Cruise Control and Stop and Go Systems
1st AUTOCOM Workshop on Preventive and Active Safety Systems for Road Vehicles State of the Art of Adaptive Cruise Control and Stop and Go Systems Emre Kural, Tahsin Hacıbekir, and Bilin Aksun Güvenç Department of Mechanical Engineering, østanbul Technical University, Gümüúsuyu, Taksim, østanbul, TR-34437, Turkey Abstract—This paper presents the state of the art of Number of Traffic Accidents in European Country Adaptive Cruise Control (ACC) and Stop and Go systems as x1000 well as Intelligent Transportation Systems enhanced with inter vehicle communication. The sensors used in these 400 systems and the level of their current technology are introduced. Simulators related to ACC and Stop and Go 300 (S&G) systems are also surveyed and the MEKAR 200 simulator is presented. Finally, future trends of ACC and Stop and Go systems and their advantages are emphasized. 100 0 I. INTRODUCTION y in e ly K y n a c a U e a n It rk a u New trends in automotive technology result in new rm Sp r e F T systems to produce safer and more comfortable vehicles. G Many driver assistant systems are introduced by automotive manufacturers in order to prevent a possible Figure 1. Traffic Accident Statistics in Europe accident from happening either by intervening in the And as a result, the driver’s routine interventions are control of the vehicle temporarily or by warning the lessened and due to a more controlled driving, fuel driver audibly and visually. consumption will be reduced. On the other hand, the The key reason as to why researchers focus on the automation of highways will also allow an increase in the subject of producing safer cars is related to the statistics number of vehicles traveling on roads without causing that expose the serious consequences of accidents. -
How Are Startups Shaping the Future of Road Mobility? ROAD MOBILITY STARTUPS ANALYSIS 2018
How are startups shaping the future of road mobility? ROAD MOBILITY STARTUPS ANALYSIS 2018 1 1 FOREWORD Startups can further enhance the mobility offer Tesla, Uber, Blablacar. Most in doing for passenger transport, Europeans would acknowledge to the point of being now a leading that these 3 startups have alternative to buses, trains and revolutionized the world of road short-haul aircraft. passenger transport over the last 10 years. Tesla, Uber and Blabacar - and their counterparts in other parts of By launching a company with the world - are no longer startups. global ambitions in this industry, Are there new startups that will the likes of which had not been herald market re-alignments of the seen since the creation of Honda in magnitude of these 3 companies? 1948, Tesla shook well-established If so, in which domains? How are car manufacturers. It opened the they going to do it? door to a new generation of cars: To answer these questions, we electric, connected, autonomous. studied 421* startups associated with on-road mobility. The world of taxis was halted, even blocked. By relying on This study of 421 startups allowed smartphones, Uber dynamised us to highlight 3 major groups: the situation and somewhat satisfied - not without criticism - / Startups that contribute to the the shortage of affordable private emergence of a new generation of driver services in some cities. cars; / Those which conceive mobility not The sharing economy is simple through means, but as a service; (...on paper): exploit the over- / Those that mix the future of the capacity that one person has in vehicle and new types of services to order to make it available to all. -
A Hierarchical Control System for Autonomous Driving Towards Urban Challenges
applied sciences Article A Hierarchical Control System for Autonomous Driving towards Urban Challenges Nam Dinh Van , Muhammad Sualeh , Dohyeong Kim and Gon-Woo Kim *,† Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University, Cheongju-si 28644, Korea; [email protected] (N.D.V.); [email protected] (M.S.); [email protected] (D.K.) * Correspondence: [email protected] † Current Address: Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea. Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: In recent years, the self-driving car technologies have been developed with many successful stories in both academia and industry. The challenge for autonomous vehicles is the requirement of operating accurately and robustly in the urban environment. This paper focuses on how to efficiently solve the hierarchical control system of a self-driving car into practice. This technique is composed of decision making, local path planning and control. An ego vehicle is navigated by global path planning with the aid of a High Definition map. Firstly, we propose the decision making for motion planning by applying a two-stage Finite State Machine to manipulate mission planning and control states. Furthermore, we implement a real-time hybrid A* algorithm with an occupancy grid map to find an efficient route for obstacle avoidance. Secondly, the local path planning is conducted to generate a safe and comfortable trajectory in unstructured scenarios. Herein, we solve an optimization problem with nonlinear constraints to optimize the sum of jerks for a smooth drive. In addition, controllers are designed by using the pure pursuit algorithm and the scheduled feedforward PI controller for lateral and longitudinal direction, respectively. -
An Introduction of Autonomous Vehicles and a Brief Survey
Journal of Critical Reviews ISSN- 2394-5125 Vol 7, Issue 13, 2020 AN INTRODUCTION OF AUTONOMOUS VEHICLES AND A BRIEF SURVEY 1Tirumalapudi Raviteja, 2Rajay Vedaraj I.S 1Research Scholar, School of Mechanical Engineering, Vellore instutite of technology, Tamilnadu, India, Email: [email protected] . 2Professor, School of Mechanical Engineering, Vellore instutite of technology, Tamilnadu, India, Email: [email protected] Received: 09.04.2020 Revised: 10.05.2020 Accepted: 06.06.2020 Abstract: An autonomous car is also called a self-driving car or driverless car or robotic car. Whatever the name but the aim of the technology is the same. Down the memory line, autonomous vehicle technology experiments started in 1920 only and controlled by radio technology. Later on, trails began in 1950. From the past few years, updating automation technology day by day and using all aspects of using in regular human life. The present scenario of human beings is addicted to automation and robotics technology using like agriculture, medical, transportation, automobile and manufacturing industries, IT sector, etc. For the last ten years, the automobile industry came forward to researching autonomous vehicle technology (Waymo Google, Uber, Tesla, Renault, Toyota, Audi, Volvo, Mercedes-Benz, General Motors, Nissan, Bosch, and Continental's autonomous vehicle, etc.). Level-3 Autonomous cars came out in 2020. Everyday autonomous vehicle technology researchers are solving challenges. In the future, without human help, robots will manufacture autonomous cars using IoT technology based on customer requirements and prefer these vehicles are very safe and comfortable in transportation systems like human traveling or cargo. Autonomous vehicles need data and updating continuously, so in this case, IoT and Artificial intelligence help to share the information device to the device.