Grupo De Galaxias NGC 1023 - Ngcs: 891, 925, 1023 Y 1058

Total Page:16

File Type:pdf, Size:1020Kb

Grupo De Galaxias NGC 1023 - Ngcs: 891, 925, 1023 Y 1058 Grupo de galaxias NGC 1023 - NGCs: 891, 925, 1023 y 1058 Posición. Justo por debajo de La Vía Láctea y en una zona, de nos 10º x 10º, que ocupa parte de las constelaciones de Andrómeda, Perseo y el Triángulo encontramos este grupo físico de galaxias. Época. Las constelaciones, antes mencionadas, son típicas de las noches otoñales en el hemisferio norte, y la zona donde se encuentra el grupo de NGC 1023 alcanza su mayor altura sobre el horizonte en el mes de octubre alrededor de las 00:00 h y en el mes de diciembre alrededor de las 22:00h. Objetos. El Grupo de NGC 1023 es un cúmulo de galaxias de tipo tardío que se hallan a unos 10Mpac. Miembros principales del cúmulo: NGC 925 (domina un subgrupo con UGC 1865 y UGC 1924), NGC 1023 (es la principal de todo el cúmulo y lidera otro subgrupo con NGC 891, NGC 949, NGC 1003, NGC 1058, UGC 2014, UGC 2034 y UGC 2259), NGC 746 e IC 239. NGC 891 Es uno de los mejores ejemplos de galaxia espiral vista de canto. Su parecido a la Vía Láctea es extraordinario, entre otros parámetros en tamaño, luminosidad y estructura barrada; por lo que es objeto de muchos estudios. NGC 925 Galaxia espiral en la que estudios en su estructura y formación estelar muestran asimetrías más comunes de las galaxias irregulares, pensándose que ha podido tener un encuentro con otra galaxia en el pasado. NGC 1023 Es una galaxia lenticular con forma de disco y una protuberancia central muy brillante, pero sin brazos espirales en el disco. La galaxia está rodeada por un halo tenue. Tiene una compañera, casi imperceptible, en su lado oriental. NGC 1058 Tenue galaxia espiral vista de cara. Se encuentra algo más cerca que las demás galaxias de la propuesta, por lo que resulta fácil adivinar su pequeño tamaño real comparándolo con el de las demás. Carta de localización NGC 891 Galaxia Espiral Mag.: 10 B. superf.: 13,7 Tamaño: 13,5’ x 2,5’ Distancia: 32 millones al. Constelación: Andromeda Coordenadas: AR 02h 23m 31.3s DE +42º 24' 52" Clase morfológica: SA(s)b? edge-on Gx espiral (sin anillo interior) de importante bulbo y brazos ceñidos? vista de canto Clase luminosidad: II Estructura espiral ordena y definida Descripción NGC: ! B, vL, vmE 22° Objeto notable, brillante, muy grande, muy alargado sobre un ángulo de posición de 22º Nota: Miembro del grupo NGC 1023. Evidente línea oscura ecuatorial Apuntes Observador Telescopio Buscador Filtro Male Altura obj. Fecha Lugar (1)Identificación (2)Brillo (3)Tamaño (4)Forma (5)Rasgo notab. (6)Campo (7)Mejor visión Ejemplos: (1) Buscador, 40x, 80x,… (2) Muy brillante, brillante, tenue,… (3) arc / m, en relación al ocular… (4) Redonda, elíptica, irregular,… (5) Forma o detalle llamativo, color,… (6) Riqueza estelar, estrella muy brillante, otro objeto,… (7) 40x, 80x, 120x, mejor imagen. Carta NGC 925 Galaxia Espiral Mag.: 9,7 B. superf.: 14 Tamaño: 10,5’ x 5,9’ Distancia: 30 millones al. Constelación: Triangulum Coordenadas: AR 02h 28m 10.5s DE +33º 38' 48" Clase morfológica: SAB(s)d Gx espiral con barra definida pero débil (sin anillo interior) y de brazos muy sueltos Clase luminosidad: IV Estructura espiral poco marcada y algo caótica Descripción NGC: cF, cL, E, vgbM, 2 st 13 np Considerablemente tenue, considerablemente grande, alargada, muy de repente más brillante hacia el medio y con dos estrellas de magnitud 13 en su borde norte. Nota: Miembro del grupo NGC 1023. Espiral basta Apuntes Observador Telescopio Buscador Filtro Male Altura obj. Fecha Lugar (1)Identificación (2)Brillo (3)Tamaño (4)Forma (5)Rasgo notab. (6)Campo (7)Mejor visión Ejemplos: (1) Buscador, 40x, 80x,… (2) Muy brillante, brillante, tenue,… (3) arc / m, en relación al ocular… (4) Redonda, elíptica, irregular,… (5) Forma o detalle llamativo, color,… (6) Riqueza estelar, estrella muy brillante, otro objeto,… (7) 40x, 80x, 120x, mejor imagen. Carta NGC 1023 Galaxia Lenticular Mag.: 9,5 B. superf.: 12,9 Tamaño: 8,7’ x 3,0’ Distancia: 34 millones al. Constelación: Perseus Coordenadas: AR 02h 41m 19.0s DE +39º 07’ 37” Clase morfológica: SB0^-(rs) Gx lenticular barrada con características próximas a espiral (indicios de anillo interior) Descripción NGC: vB, vL, cmE, vvmbM Muy brillante, muy grande, muy alargada, muchísimo más brillante hacia el medio Nota: La más brillante del Grupo NGC 1023. Débil Gx E en su punta este. Apuntes Observador Telescopio Buscador Filtro Male Altura obj. Fecha Lugar (1)Identificación (2)Brillo (3)Tamaño (4)Forma (5)Rasgo notab. (6)Campo (7)Mejor visión Ejemplos: (1) Buscador, 40x, 80x,… (2) Muy brillante, brillante, tenue,… (3) arc / m, en relación al ocular… (4) Redonda, elíptica, irregular,… (5) Forma o detalle llamativo, color,… (6) Riqueza estelar, estrella muy brillante, otro objeto,… (7) 40x, 80x, 120x, mejor imagen. Carta NGC 1058 Galaxia Espiral Mag.: 11,4 B. superf.: 13,5 Tamaño: 3,0’ x 2,8’ Distancia: 29,5 millones al. Constelación: Perseus Coordenadas: AR 02h 44m 24.5s DE +37º 23' 35" Clase morfológica: SA(rs)c Gx espiral (con indicios de disco interior) de bulbo modesto y brazos bastante sueltos Clase Luminosidad: III Estructura espiral poco marcada y poco definida Descripción NGC: pF, cL, R, glbM Bastante tenue, considerablemente grande, redonda, gradualmente poco más brillante hacia el medio. Nota: Miembro del Grupo NGC 1023. Cuerpo principal desigual. Patrón de brazo multiple. Apuntes Observador Telescopio Buscador Filtro Male Altura obj. Fecha Lugar (1)Identificación (2)Brillo (3)Tamaño (4)Forma (5)Rasgo notab. (6)Campo (7)Mejor visión Ejemplos: (1) Buscador, 40x, 80x,… (2) Muy brillante, brillante, tenue,… (3) arc / m, en relación al ocular… (4) Redonda, elíptica, irregular,… (5) Forma o detalle llamativo, color,… (6) Riqueza estelar, estrella muy brillante, otro objeto,… (7) 40x, 80x, 120x, mejor imagen. Carta Fuentes: clasificación y distancia de galaxias en http://ned.ipac.caltech.edu/, otros datos de objetos en http://www.ngcicproject.org/, fotografías en http://archive.stsci.edu/, .
Recommended publications
  • Rotation Curves of High-Resolution LSB and SPARC Galaxies with Fuzzy and Multistate (Ultralight Boson) Scalar field Dark Matter
    MNRAS 475, 1447–1468 (2018) doi:10.1093/mnras/stx3208 Advance Access publication 2017 December 12 Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter T. Bernal,1‹† L. M. Fernandez-Hern´ andez,´ 1 T. Matos2‡ andM.A.Rodr´ıguez-Meza1‡ 1Departamento de F´ısica, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, Ciudad de Mexico´ 11801, Mexico 2Departamento de F´ısica, Centro de Investigacion´ y de Estudios Avanzados del IPN, AP 14-740, Ciudad de Mexico´ 07000, Mexico Accepted 2017 December 8. Received 2017 December 8; in original form 2017 January 4 ABSTRACT Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose–Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high- resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein–Klein–Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo.
    [Show full text]
  • Why Gravity Cannot Be Quantized Canonically, and What We Can We Do About It
    WHY GRAVITY CANNOT BE QUANTIZED CANONICALLY, AND WHAT WE CAN WE DO ABOUT IT Philip D. Mannheim Department of Physics University of Connecticut Presentation at Miami 2013, Fort Lauderdale December 2013 1 GHOST PROBLEMS, UNITARITY OF FOURTH-ORDER THEORIES AND PT QUANTUM MECHANICS 1. P. D. Mannheim and A. Davidson, Fourth order theories without ghosts, January 2000 (arXiv:0001115 [hep-th]). 2. P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A 71, 042110 (2005). (0408104 [hep-th]). 3. P. D. Mannheim, Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37, 532 (2007). (arXiv:0608154 [hep-th]). 4. C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008). (arXiv:0706.0207 [hep-th]). 5. C. M. Bender and P. D. Mannheim, Giving up the ghost, Jour. Phys. A 41, 304018 (2008). (arXiv:0807.2607 [hep-th]) 6. C. M. Bender and P. D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78, 025022 (2008). (arXiv:0804.4190 [hep-th]) 7. C. M. Bender and P. D. Mannheim, PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues, Phys. Lett. A 374, 1616 (2010). (arXiv:0902.1365 [hep-th]) 8. P. D. Mannheim, PT symmetry as a necessary and sufficient condition for unitary time evolution, Phil. Trans. Roy. Soc. A. 371, 20120060 (2013). (arXiv:0912.2635 [hep-th]) 9. C. M. Bender and P. D. Mannheim, PT symmetry in relativistic quantum mechanics, Phys.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Arxiv:1904.13390V3 [Gr-Qc] 14 Jul 2021
    July 15, 2021 0:35 WSPC/INSTRUCTION FILE halo˙spacetime International Journal of Modern Physics D © World Scientific Publishing Company Gravitational lensing study of cold dark matter led galactic halo Samrat Ghosh High Energy & Cosmic Ray Research Centre, University of North Bengal, Siliguri, West Bengal, 734013, India [email protected] Arunava Bhadra High Energy & Cosmic Ray Research Centre, University of North Bengal, Siliguri, West Bengal, 734013, India aru [email protected] Amitabha Mukhopadhyay Department of Physics, University of North Bengal, Siliguri, West Bengal, 734013, India amitabha 62@rediffmail.com Received Day Month Year Revised Day Month Year In this work the space-time geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully-Fisher relation and assuming the presence of cold dark matter in the galaxy. The gravitational lensing analysis is performed treating the so obtained space-time as a gravitational lens. It is found that the aforementioned space-time as the gravitational lens can consistently explain the galaxy-galaxy weak gravitational lensing observations and the lensing obser- vations of the well-known Abell 370 and Abell 2390 galaxy clusters. arXiv:1904.13390v3 [gr-qc] 14 Jul 2021 Keywords: galactic rotation curve; galactic halo; gravitational lensing. PACS numbers: 1. Introduction The astrophysical observations reveal that after the termination of the luminous disk the expected Keplerian fall-off is absent in rotation curves (variation of the angular velocity of test particles with distance from the galactic center) of spiral galaxies.58, 63–65, 73 The frequency shift of the 21 cm HI emission line from neutral hydrogen cloud at large distances from the galactic center rotating in circular orbits allows constructing a rotation curve of galaxies involving distances up to a few tens of kpc or even a few hundreds of kpc in few cases.
    [Show full text]
  • The WSRT Wide-Field H I Survey
    A&A 406, 829–846 (2003) Astronomy DOI: 10.1051/0004-6361:20030761 & c ESO 2003 Astrophysics The WSRT wide-field H I survey I. The background galaxy sample R. Braun1, D. Thilker2, and R. A. M. Walterbos3 1 ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2695, USA 3 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003, USA Received 4 April 2003 / Accepted 19 May 2003 Abstract. We have used the Westerbork array to carry out an unbiased wide-field survey for H emission features, achieving −1 2 an sensitivity of about 18 mJy/Beam at a velocity resolution of 17 km s over 1800 deg and between −1000 < VHel < +6500 km s−1. The primary data consists of auto-correlation spectra with an effective angular resolution of 49 FWHM, although cross-correlation data were also acquired. The survey region is centered approximately on the position of Messier 31 and is Nyquist-sampled over 60 × 30◦ in RA × Dec. More than 100 distinct features are detected at high significance in each of the two velocity regimes (negative and positive LGSR velocities). In this paper we present the results for our H detections of external galaxies at positive LGSR velocity. We detect 155 external galaxies in excess of 8σ in integrated H flux density. Plausible optical associations are found within a 30 search radius for all but one of our H detections in DSS images, although several are not previously cataloged or do not have published red-shift determinations.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Concise Catalog of Deep-Sky Objects
    1111 2 Concise Catalog of Deep-sky Objects 3 4 5 6 7 8 9 1011 1 2 3111 411 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 4 5 6 7 481111 Springer London Berlin Heidelberg New York Hong Kong Milan Paris Tokyo 1111 2 W.H. Finlay 3 4 5 6 7 8 Concise Catalog 9 1011 1 of Deep-sky 2 3111 4 5 Objects 6 7 8 Astrophysical Information 9 20111 for 500 Galaxies, Clusters 1 and Nebulae 2 3 4 5 6 With 18 Figures 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 4 5 6 7 481111 Cover illustrations: Background: NGC 2043, by courtesy of Zsolt Frei, from CD-ROM Atlas of Nearby Galaxies, copyright © by Princeton University Press, reprinted by permission of Princeton University Press. Inset 1: NGC 3031, by courtesy of Zsolt Frei, from CD-ROM Atlas of Nearby Galaxies, copyright © by Princeton University Press, reprinted by permission of Princeton University Press. Inset 2: M80, courtesy STScI. Inset 3: NGC 2244, by courtesy of Travis Rector and the NOAO/AURA/NSF. Inset 4: NGC 6543, courtesy STScI. British Library Cataloguing in Publication Data Finlay, W.H. Concise catalog of deep-sky objects : astrophysical information for 500 galaxies, clusters and nebulae 1. Galaxies – Catalogs 2. Galaxies – Clusters – Catalogs 3. Stars – Clusters – Catalogs 4. Nebulae – Catalogs I. Title 523.8′0216 ISBN 1852336919 Library of Congress Cataloging-in-Publication Data Finlay, W.H.
    [Show full text]
  • New Evidence for Dark Matter
    New evidence for dark matter A. Boyarsky1,2, O. Ruchayskiy1, D. Iakubovskyi2, A.V. Macci`o3, D. Malyshev4 1Ecole Polytechnique F´ed´erale de Lausanne, FSB/ITP/LPPC, BSP CH-1015, Lausanne, Switzerland 2Bogolyubov Institute for Theoretical Physics, Metrologichna str., 14-b, Kiev 03680, Ukraine 3Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland Observations of star motion, emissions from hot ionized gas, gravitational lensing and other tracers demonstrate that the dynamics of galaxies and galaxy clusters cannot be explained by the Newtonian potential produced by visible matter only [1–4]. The simplest resolution assumes that a significant fraction of matter in the Universe, dominating the dynamics of objects from dwarf galaxies to galaxy clusters, does not interact with electromagnetic radiation (hence the name dark matter). This elegant hypothesis poses, however, a major challenge to the highly successful Standard Model of particle physics, as it was realized that dark matter cannot be made of known elementary particles [4]. The quest for direct evidence of the presence of dark matter and for its properties thus becomes of crucial importance for building a fundamental theory of nature. Here we present a new universal relation, satisfied by matter distributions at all observed scales, and show its amaz- ingly good and detailed agreement with the predictions of the most up-to-date pure dark matter simulations of structure formation in the Universe [5–7]. This behaviour seems to be insensitive to the complicated feedback of ordinary matter on dark matter.
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]
  • AE Aurigae, 82 AGN (Active Galactic Nucleus), 116 Andromeda Galaxy
    111 11 Index 011 111 Note: Messier objects, IC objects and NGC objects with separate entries in Chapters 2–4 are not listed in the index since they are given in numerical order in the book and are therefore readily found. 0111 AE Aurigae, 82 disk, galaxy (continued) AGN (active galactic nucleus), circumstellar, 19, 97, 224 with most number of globular 116 counter-rotating galactic, 34, clusters, 43 Andromeda galaxy, 20, 58 128, 166, 178 with most number of recorded Antennae, the, 142 Galactic, 4 supernovae, 226 Ap star, 86, 87, 235 globular cluster, 37, 221 Ghost of Jupiter, 119 Deer Lick group, 236 globular cluster, ␦ Scuti type star, 230 central black hole, 14, 231 0111 B 86, 205 DL Cas, 55 closest, 8, 37, 192, 208, 221 Baade’s window, 205, 207 Double Cluster, 68, 69 collapsed-core, 196 Barnard 86, 205 Duck Nebula, 95 containing planetary nebulae, 14, Beehive Cluster, 25, 107 Dumbbell Nebula, 18, 221 17, 214, 231 Be star, 26, 67, 69, 94, 101 fraction that are metal-poor, bipolar planetary nebulae, 18, 37 221 Eagle Nebula, 14, 210 fraction that are metal-rich, dex Black-Eye Galaxy, 34, 178 early-type galaxy, 2, 52 37 blazar, 145 Eridanus A galaxy group, 74 highest concentration of blue 245 Blinking Planetary Nebula, 220 Eskimo Nebula, 98 stragglers in, 19, 232 0111 Blue Flash Nebula, 224 ESO 495-G017, 107 in bulge, 36, 197, 212 Blue Snowball, 239 E.T. Cluster, 62 in disk, 37, 221 In- blue straggler, 94, 95, 212, 213 most concentrated, 14, 208, 231 Bubble Nebula, 238 most luminous, 15, 100, 196 bulge, field star contamination, 9–10, 23,
    [Show full text]
  • 1956Aj. X V" O'! the Astronomical Journal
    X O'!V" THE ASTRONOMICAL 1956AJ. JOURNAL Founded by B. A. Gould PUBLISHED BY THE AMERICAN ASTRONOMICAL SOCIETY VOLUME 61 1956 April - No. 1237 NUMBER 3 REDSHIFTS AND MAGNITUDES OF EXTRAGALACTIC NEBULAE * By M. L. HUMASON, N. U. MAYALL, and A. R. SANDAGE Abstract. There are three main sections to the present discussion. Part I contains redshifts of 620 extragalactic nebulae observed at Mount Wilson and Palomar. Included in these data are redshifts for 26 clusters of nebulae. Part II contains redshifts for 300 nebulae observed at Lick, together with a comparison of results for 114 nebulae in common with the Mount Wilson-Palomar lists. Part III is a discussion of these new redshift data in combination with photometric data. The redshift-apparent magnitude relation is investigated for (1) field nebulae with and without regard to nebular type, (2) isolated groups, and (3) clusters of nebulae. The principal corrections applied to the apparent magnitudes are dis- cussed in two of the three appendices. Appendix A gives the procedure for correcting the published magnitudes for the effect of different photometer apertures. Appendix B describes the theory and computation of the correction for the selective effect of redshifts. In the final Appendix C, a provisional evaluation of the Hubble redshift parameter H is made by two independent methods. The principal results of this study may be stated as follows. (1) For those nebulae observed in common there is a negligible mean systematic difference between the redshifts from the two sources. (2) Spectrographico coverage is 63 per cent complete to mpg = 12.9 in the Shapley-Ames catalogue for nebulae north of ô = —30 .
    [Show full text]