Per – Objektauswahl NGC

Total Page:16

File Type:pdf, Size:1020Kb

Per – Objektauswahl NGC Per – Objektauswahl NGC NGC 0650 NGC 1039 NGC 1131 NGC 1177 NGC 1227 NGC 1270 NGC 1282 NGC 1465 NGC 1605 NGC 0651 NGC 1050 NGC 1138 NGC 1186 NGC 1233 NGC 1271 NGC 1283 NGC 1491 NGC 1624 NGC 0744 NGC 1053 NGC 1159 NGC 1193 NGC 1245 NGC 1272 NGC 1293 NGC 1496 NGC 0869 NGC 1058 NGC 1160 NGC 1198 NGC 1250 NGC 1273 NGC 1294 NGC 1499 NGC 0884 NGC 1077 NGC 1161 NGC 1207 NGC 1259 NGC 1274 NGC 1333 NGC 1513 NGC 0957 NGC 1086 NGC 1164 NGC 1212 NGC 1260 NGC 1275 NGC 1334 NGC 1528 NGC 1001 NGC 1106 NGC 1167 NGC 1213 NGC 1264 NGC 1277 NGC 1335 NGC 1545 NGC 1003 NGC 1122 NGC 1169 NGC 1220 NGC 1265 NGC 1278 NGC 1342 NGC 1548 NGC 1005 NGC 1129 NGC 1171 NGC 1224 NGC 1267 NGC 1279 NGC 1348 NGC 1579 NGC 1023 NGC 1130 NGC 1175 NGC 1226 NGC 1268 NGC 1281 NGC 1444 NGC 1582 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Übersichtskarte Auswahl NGC 650_651 Aufsuchkarte Auswahl Auswahl NGC 650_651 ÜbersichtskarteNGC Aufsuch- karte NGC 744 Aufsuchkarte Auswahl Auswahl NGC 744 ÜbersichtskarteNGC Aufsuch- karte NGC 869_884_957 Aufsuchkarte Auswahl Auswahl NGC 869_884 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 957 ÜbersichtskarteNGC Aufsuch- karte N1001_3_5_39_53_77_86_1106_22_29_30_31_38 Aufsuchkarte Auswahl Auswahl NGC 1001_1005_1053 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1003 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1039 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1077 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1086 ÜbersichtskarteNGC Aufsuch- karte Auswahl N 1106_1122_1129_1130_1131 ÜbersichtskarteN Aufsuch- karte Auswahl N 1138N Übersichtskarte Aufsuch- karte NGC 1023_1058 Aufsuchkarte Auswahl Auswahl NGC 1023 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1058 ÜbersichtskarteNGC Aufsuch- karte N 1050 Aufsuchkarte Auswahl Auswahl NGC 1050 Übersichtskarte NGC Aufsuch- karte N1159_60_61_64_71_75_77_86_93_98 Aufsuchkarte Auswahl Auswahl NGC 1160_1161 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1159_1171 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1164_1175_1177_1186 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1193 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1198 ÜbersichtskarteNGC Aufsuch- karte NGC 1167_1226_1227 Aufsuchkarte Auswahl Auswahl NGC 1167 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1226_1227 ÜbersichtskarteNGC Aufsuch- karte NGC 1169_1245 Aufsuchkarte Auswahl Auswahl NGC 1169 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1245 ÜbersichtskarteNGC Aufsuch- karte NGC 1207_1213_1233 Aufsuchkarte Auswahl Auswahl NGC 1207_1213 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1233 ÜbersichtskarteNGC Aufsuch- karte N 1212_1224_1250 Aufsuchkarte Auswahl Auswahl NGC 1212_1224 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1250 ÜbersichtskarteNGC Aufsuch- karte NGC 1220 Aufsuchkarte Auswahl Auswahl NGC 1220 ÜbersichtskarteNGC Aufsuch- karte N 1259_60_65_Per GaCl_92_93 Aufsuchkarte Auswahl Auswahl N 1259_60_64 ÜbersichtskarteN Aufsuch- karte Auswahl Aufsuch- N 1265_7_8_70-5_7-9_81-3_93_4N Übersichtskarte karte NGC 1333 Aufsuchkarte Auswahl Auswahl NGC 1333 ÜbersichtskarteNGC Aufsuch- karte NGC 1334_1335 Aufsuchkarte Auswahl Auswahl NGC 1334_1335 ÜbersichtskarteNGC Aufsuch- karte NGC 1342_1499 Aufsuchkarte Auswahl Auswahl NGC 1342 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1499 ÜbersichtskarteNGC Aufsuch- karte NGC 1348 Aufsuchkarte Auswahl Auswahl NGC 1348 ÜbersichtskarteNGC Aufsuch- karte N 1444_1491_1496_1513_1528_1545 Aufsuchkarte Auswahl Auswahl NGC 1444 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1491 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1496 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1513 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1528 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1545 ÜbersichtskarteNGC Aufsuch- karte NGC 1465 Aufsuchkarte Auswahl Auswahl NGC 1465 ÜbersichtskarteNGC Aufsuch- karte NGC 1548_1579 Aufsuchkarte Auswahl Auswahl NGC 1548 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1579 ÜbersichtskarteNGC Aufsuch- karte NGC 1582_1605_1624 Aufsuchkarte Auswahl Auswahl NGC 1582 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1605 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1624 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 650/1 p m m = 12. 2 156“ x 90“ NGC 650_651 DetailfotoNGC Übersichts- karte Auswahl NGC 744 p m m = 9. 4 11‘ NGC 744 DetailfotoNGC Übersichts- karte Auswahl NGC 869 p m m = 4. 3 42‘ NGC 869 DetailfotoNGC Übersichts- karte Auswahl NGC 884 p m m = 4. 3 46‘ NGC 884 DetailfotoNGC Übersichts- karte Auswahl NGC 957 p m m = 7. 2 11‘ NGC 957 DetailfotoNGC Übersichts- karte Auswahl NGC 1001 p m m = 15. 0 0.‘7 x 0.‘3 NGC 1001 DetailfotoNGC Übersichts- karte Auswahl NGC 1003 p m m = 12. 0 5.‘4 x 2.‘1 NGC 1003 DetailfotoNGC Übersichts- karte Auswahl NGC 1005 p m m = 14. 8 0.‘3 x 0.‘3 NGC 1005 DetailfotoNGC Übersichts- karte Auswahl NGC 1023 p m m = 10. 5 8.‘7 x 3.‘3 NGC 1023 DetailfotoNGC Übersichts- karte Auswahl NGC 1039 p m m = 5. 5 35‘ NGC 1039 DetailfotoNGC Übersichts- karte Auswahl NGC 1050 p m m = 13. 5 1.‘6 x 1.‘1 NGC 1050 DetailfotoNGC Übersichts- karte Auswahl NGC 1053 p m m = 13. 9 1.‘7 x 0.‘8 NGC 1053 DetailfotoNGC Übersichts- karte Auswahl NGC 1058 p m m = 12. 2 3.‘5 x 3.‘4 NGC 1058 DetailfotoNGC Übersichts- karte Auswahl NGC 1077 p m m = 14. 5 1.‘1 x 0.‘8 NGC 1077 DetailfotoNGC Übersichts- karte Auswahl NGC 1086 p m m = 14. 0 1.‘4 x 1.‘1 NGC 1086 DetailfotoNGC Übersichts- karte Auswahl NGC 1106 p m m = 13. 3 1.‘7 x 1.‘7 NGC 1106 DetailfotoNGC Übersichts- karte Auswahl NGC 1122 p m m = 13. 0 2.‘0 x 1.‘6 NGC 1122 DetailfotoNGC Übersichts- karte Auswahl NGC 1129 p m m = 13. 5 4.‘1 x 3.‘1 NGC 1130 p m m = 16. 1 0.‘5 x 0.‘2 NGC 1131 p m m = 15. 6 0.‘4 x 0.‘4 NGC 1129_1130_1131 DetailfotoNGC Übersichts- karte Auswahl NGC 1138 p m m = 14. 0 1.‘4 x 1.‘4 NGC 1138 DetailfotoNGC Übersichts- karte Auswahl NGC 1159 p m m = 14. 0 0.‘5 x 0.‘4 NGC 1159 DetailfotoNGC Übersichts- karte Auswahl NGC 1160 p m m = 12. 6 1.‘6 x 0.‘8 NGC 1161 p m m = 12. 0 3.‘1 x 2.‘2 NGC 1160_1161 DetailfotoNGC Übersichts- karte Auswahl NGC 1164 p m m = 14. 0 1.‘5 x 1.‘2 NGC 1164 DetailfotoNGC Übersichts- karte Auswahl NGC 1167 p m m = 13. 4 3.‘1 x 2.‘5 NGC 1167 DetailfotoNGC Übersichts- karte Auswahl NGC 1169 p m m = 12. 2 4.‘4 x 3.‘0 NGC 1169 DetailfotoNGC Übersichts- karte Auswahl NGC 1171 p m m = 13. 0 3.‘2 x 1.‘4 NGC 1171 DetailfotoNGC Übersichts- karte Auswahl NGC 1175 p m m = 13. 8 2.‘5 x 0.‘8 NGC 1177 p m m = 15. 0 0.‘4 x 0.‘4 NGC 1175_1177 DetailfotoNGC Übersichts- karte Auswahl NGC 1186 p m m = 12. 5 3.‘3 x 1.‘4 NGC 1186 DetailfotoNGC Übersichts- karte Auswahl NGC 1193 p m m = 12. 6 1.‘5 NGC 1193 DetailfotoNGC Übersichts- karte Auswahl NGC 1198 p m m = 13. 5 2.‘5 x 1.‘4 NGC 1198 DetailfotoNGC Übersichts- karte Auswahl NGC 1207 p m m = 13. 4 1.‘8 x 1.‘5 NGC 1207 DetailfotoNGC Übersichts- karte Auswahl NGC 1212 p m m = 15. 5 1.‘0 x 0.‘5 NGC 1212 DetailfotoNGC Übersichts- karte Auswahl NGC 1213 p m m = 15. 5 2.‘7 x 2.‘1 NGC 1213 DetailfotoNGC Übersichts- karte Auswahl NGC 1220 p m m = 11. 8 2‘.0 NGC 1220 DetailfotoNGC Übersichts- karte Auswahl NGC 1224 p m m = 14. 7 1.‘7 x 1.‘5 NGC 1224 DetailfotoNGC Übersichts- karte Auswahl NGC 1226 p m m = 13. 9 2.‘3 x 1.‘8 NGC 1227 p m m = 15. 5 1.‘1 x 1.‘0 NGC 1226_1227 DetailfotoNGC Übersichts- karte Auswahl NGC 1233 p m m = 14. 0 2.‘1 x 0.‘9 NGC 1233 DetailfotoNGC Übersichts- karte Auswahl NGC 1245 p m m = 6. 9 10‘ NGC 1245 DetailfotoNGC Übersichts- karte Auswahl NGC 1250 p m m = 13. 7 2.‘7 x 1.‘1 NGC 1250 DetailfotoNGC Übersichts- karte Auswahl NGC 1259 p m m = 15. 7 0.‘7 x 0.‘3 NGC 1260 p m m = 14. 2 1.‘7 x 0.‘8 NGC 1259_1260 DetailfotoNGC Übersichts- karte Auswahl NGC 1264 p m m = 15. 0 1.‘1 x 1.‘0 NGC 1264 DetailfotoNGC Übersichts- karte Auswahl NGC 1265 p m m = 13. 2 2.‘1 x 1.‘9 NGC 1265 DetailfotoNGC Übersichts- karte Auswahl NGC 1267 p m m = 14. 1 1.‘4 x 1.‘1 NGC 1268 p m m = 14. 5 1.‘2 x 0.‘9 NGC 1270 p m m = 14. 1 1.‘1 x 0.‘9 NGC 1267_1268_1270 DetailfotoNGC Übersichts- karte Auswahl NGC 1271 p m m = 15. 5 0.‘5 x 0.‘2 NGC 1271 DetailfotoNGC Übersichts- karte Auswahl Datenblatt NGC 1272 NGC 1272_73_74_75_77_78_79_81 DetailfotoNGC Übersichts- karte Auswahl NGC 1293 p m m = 14. 3 1.‘1 x 1.‘1 NGC 1282 p m m = 13. 7 1.‘7 x 1.‘3 NGC 1282_1283 DetailfotoNGC Übersichts- karte Auswahl NGC 1293 p m m = 14. 3 1.‘1 x 1.‘1 NGC 1294 p m m = 14. 2 1.‘8 x 1.‘6 NGC 1293_1294 DetailfotoNGC Übersichts- karte Auswahl NGC 1333 9‘ x 7‘ NGC 1333 DetailfotoNGC Übersichts- karte Auswahl NGC 1334 p m m = 14. 0 1.‘6 x 1.‘0 NGC 1334 DetailfotoNGC Übersichts- karte Auswahl NGC 1335 p m m = 15. 0 1.‘3 x 1.‘0 NGC 1335 DetailfotoNGC Übersichts- karte Auswahl NGC 1342 p m m = 7. 1 14‘ NGC 1342 DetailfotoNGC Übersichts- karte Auswahl NGC 1348 5‘ NGC 1348 DetailfotoNGC Übersichts- karte Auswahl NGC 1444 p m m = 6. 4 4‘ NGC 1444 DetailfotoNGC Übersichts- karte Auswahl NGC 1465 p m m = 14. 7 1.‘6 x 0.‘4 NGC 1465 DetailfotoNGC Übersichts- karte Auswahl NGC 1491 3‘ x 3‘ NGC 1491 DetailfotoNGC Übersichts- karte Auswahl NGC 1496 p m m = 9. 6 6‘ NGC 1496 DetailfotoNGC Übersichts- karte Auswahl NGC 1499 p m m = 5. 0 145‘ x 40‘ NGC 1499 DetailfotoNGC Übersichts- karte Auswahl NGC 1513 p m m = 8.
Recommended publications
  • Cosmicflows-3: Cosmography of the Local Void
    Draft version May 22, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 COSMICFLOWS-3: COSMOGRAPHY OF THE LOCAL VOID R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Pomarede` Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Universite' Paris-Saclay, 91191 Gif-sur-Yvette, France Romain Graziani University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Hel´ ene` M. Courtois University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Yehuda Hoffman Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743, USA ABSTRACT Cosmicflows-3 distances and inferred peculiar velocities of galaxies have permitted the reconstruction of the structure of over and under densities within the volume extending to 0:05c. This study focuses on the under dense regions, particularly the Local Void that lies largely in the zone of obscuration and consequently has received limited attention. Major over dense structures that bound the Local Void are the Perseus-Pisces and Norma-Pavo-Indus filaments sepa- rated by 8,500 km s−1. The void network of the universe is interconnected and void passages are found from the Local Void to the adjacent very large Hercules and Sculptor voids. Minor filaments course through voids. A particularly interesting example connects the Virgo and Perseus clusters, with several substantial galaxies found along the chain in the depths of the Local Void. The Local Void has a substantial dynamical effect, causing a deviant motion of the Local Group of 200 − 250 km s−1.
    [Show full text]
  • John J. Cowan Date of Birth: April 3, 1948 Place of Birth: Washington, D.C
    VITA NAME: John J. Cowan Date of Birth: April 3, 1948 Place of Birth: Washington, D.C. EDUCATION: 1970 B.A. George Washington University, Washington, D.C. 1972 M.S. Case Institute of Technology, Cleveland, OH 1976 Ph.D. University of Maryland, College Park, MD PROFESSIONAL EXPERIENCE: 2002–present David Ross Boyd Professor, University of Oklahoma, 2002–2002 Research Fellow, University of Texas, Austin, TX 1998–2002 Samuel Roberts Noble Foundation Presidential Professor, University of Oklahoma, Norman, OK 1997–1998 Big XIIFaculty Fellow,University ofOklahoma 1991–1992 Visiting Professor, Department of Astronomy, Columbia University, New York, NY 1989–present Professor, Department of Physics and Astronomy, University of Oklahoma, Norman, OK 1988–1994 Consultant and Participating Guest, Lawrence Livermore National Laboratory, Livermore, CA 1987–1988 Visiting Research Associate, Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 1984–1989 Associate Professor, University of Oklahoma 1979–1984 Assistant Professor, University of Oklahoma 1976–1979 Postdoctoral Research Fellow, Harvard-Smithsonian Center for Astrophysics, Harvard University PROFESSIONAL AND HONORARY SOCIETIES: American Astronomical Society International Astronomical Union Phi Beta Kappa RESEARCH INTERESTS: Stellar evolution, supernovae, nucleosynthesis and abundances Radio observations of supernovae and galaxies JOHN J. COWAN Page 2 PUBLICATIONS J. J. Cowan and W. K. Rose, “Production of 17O and 18O by Means of the Hot CNO Tri-Cycle,” Astrophys. J. (Letters) 201, L45 (1975) J. J. Cowan, M. Kafatos, and W. K. Rose, “Sources of Excitation of the Interstellar Gas and Galactic Structure,” Astrophys. J. 195, 47 (1975) M. F. A’Hearn and J. J. Cowan, “Molecular Production Rates in Comet Kohoutek,” As- tron.
    [Show full text]
  • Galaxy Clusters in Radio → Non-Thermal Phenomena
    GalaxyGalaxy ClustersClusters inin radioradio ÎÎ NonNon--thermalthermal phenomenaphenomena Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Tonanzintla, GH2005, 4-5 July 2005 Lecture 4 : Radio emission from cluster galaxies: Classical radio galaxies Radio – X-ray interaction Distorted structures: NAT and WAT Radio galaxies filling X-ray cavities Confinement : Trigger of radio emission: radio luminosity function Enhancement of star formation RadiogalaxiesRadiogalaxies X-ray:X-ray: ThermalThermal ggasas Radio:Radio: AA 119119 (z(z == 0.0441)0.0441) RadioRadio GalaxiesGalaxies PerseusPerseus X-rayX-ray ROSAROSATT PSPCPSPC HotHot gasgas NGC 1265 RadioRadio WSRTWSRT 4949 cmcm RadioRadio galaxiesgalaxies NGC 1275 IC310 RadioRadio galaxiesgalaxies ooff highhigh andand lowlow ppowerower havehave quitequite differentdifferent morphologiesmorphologies onon thethe largelarge scalescale (Fanaroff(Fanaroff && RileyRiley 11974)974) CygCyg AA FRFR IIII 24.24.55 -1-1 HighHigh popowewer:r: PP1.41.4 GHzGHz >> 1010 WW HzHz 3C3C 444499 24.524.5 -1-1 LowLow power:power: PP1.41.4 GHzGHz << 1010 WW HzHz FRFR II RADIORADIO GALAXIESGALAXIES ATAT INCREASINGINCREASING RADIORADIO POWERPOWER 1024 W Hz-1 at 1.4 GHz 3C 31 DA 240 4C 73.08 1026.5 W Hz-1 From Atlas of P.Leahy, powers computed With H0=75, q0=0.5 Owen and Ledlow 1994 TheThe radioradio emissionemission fromfrom INDIVIDUALINDIVIDUAL GALAXIESGALAXIES isis foufoundnd ttoo extendextend WELLWELL BEYONDBEYOND thethe physicalphysical sizesize ofof thethe hosthost opticaloptical galaxygalaxy (>(> oror
    [Show full text]
  • A Dissertation Entitled Star Cluster Populations in the Spiral Galaxy
    A Dissertation entitled Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics Dr. Rupali Chandar, Committee Chair Dr. John-David Smith, Committee Member Dr. Steven Federman, Committee Member Dr. Bo Gao, Committee Member Dr. Bradley Whitmore, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2015 Copyright 2015, Lesley A. Simanton This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo August 2015 Most stars form in groups and clusters. Stars clusters range in age from very young (< 3 Myr, embedded in gas clouds) to some of the most ancient objects in the universe (> 13 Gyr), providing clues to the formation and evolution of their host galaxies. Our knowledge of the diversity of star cluster populations has expanded over the last few decades, especially by being able to examine star clusters outside of the Milky Way (MW). In this dissertation, we continue this expansion of extragalactic star cluster studies by examining the star cluster system of the nearby spiral galaxy M101. We utilize photometry from Hubble Space T elescope images to assess luminosity, color, size, and spatial distributions of old star clusters, and spectroscopy from the Gemini- North telescope to determine ages, metallicities, and velocities of a subset of both young and old clusters in M101.
    [Show full text]
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA
    1 ; NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia t PROPERTY OF TH E U.S. G - iM RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA. 4 OCT 2 2em , July 1, 1984 - September 30, 1984 .. _._r_.__. _.. RESEARCH PROGRAMS 140-ft Telescope Hours Scheduled observing 1853.75 Scheduled maintenance and equipment changes 205.00 Scheduled tests and calibration 145.25 Time lost due to: equipment failure 122.00 power 3.25 weather 0.25 interference 14.50 The following continuum program was conducted during this quarter. No. Observer Program W193 N. White (European Space Observations at 6 cm of the eclipsing Agency) RS CVn system AR Lac. J. Culhane (Cambridge) J. Kuijpers (Utrecht) K. Mason (Cambridge) A. Smith (European Space Agency) The following line programs were conducted during this quarter. No. Observer Program B406 M. Bell (Herzberg) Observations at 13.9 GHz in search of H. Matthews (Herzberg) C6 H in TMC1. T. Sears (Brookhaven) B422 M. Bell (Herzberg) Observations at 3 cm to search for H. Matthews (Herzberg) C5 H in TMC1 and examination of T. Sears (Brookhaven) spectral features in IRC+10216 thought to be due to HC 9 N or C5 H. B423 M. Bell (Herzberg) Observations at 9895 MHz in an attempt H. Matthews (Herzberg) to detect C3 N in absorption against Cas A. 2 No. Observer Program B424 W. Batria Observations at 9.1 GHz of a newly discovered comet. C216 F. Clark (Kentucky) Observations at 6 cm and 18 cm of OH S. Miller (Kentucky) and H20 to study stellar winds and cloud dynamics.
    [Show full text]
  • Radio Sources in Low-Luminosity Active Galactic Nuclei
    A&A 392, 53–82 (2002) Astronomy DOI: 10.1051/0004-6361:20020874 & c ESO 2002 Astrophysics Radio sources in low-luminosity active galactic nuclei III. “AGNs” in a distance-limited sample of “LLAGNs” N. M. Nagar1, H. Falcke2,A.S.Wilson3, and J. S. Ulvestad4 1 Arcetri Observatory, Largo E. Fermi 5, Florence 50125, Italy 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany e-mail: [email protected] 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Adjunct Astronomer, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 4 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA e-mail: [email protected] Received 23 January 2002 / Accepted 6 June 2002 Abstract. This paper presents the results of a high resolution radio imaging survey of all known (96) low-luminosity active galactic nuclei (LLAGNs) at D ≤ 19 Mpc. We first report new 2 cm (150 mas resolution using the VLA) and 6 cm (2 mas resolution using the VLBA) radio observations of the previously unobserved nuclei in our samples and then present results on the complete survey. We find that almost half of all LINERs and low-luminosity Seyferts have flat-spectrum radio cores when observed at 150 mas resolution. Higher (2 mas) resolution observations of a flux-limited subsample have provided a 100% (16 of 16) detection rate of pc-scale radio cores, with implied brightness temperatures ∼>108 K. The five LLAGNs with the highest core radio fluxes also have pc-scale “jets”.
    [Show full text]
  • Rotation Curves of High-Resolution LSB and SPARC Galaxies with Fuzzy and Multistate (Ultralight Boson) Scalar field Dark Matter
    MNRAS 475, 1447–1468 (2018) doi:10.1093/mnras/stx3208 Advance Access publication 2017 December 12 Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter T. Bernal,1‹† L. M. Fernandez-Hern´ andez,´ 1 T. Matos2‡ andM.A.Rodr´ıguez-Meza1‡ 1Departamento de F´ısica, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, Ciudad de Mexico´ 11801, Mexico 2Departamento de F´ısica, Centro de Investigacion´ y de Estudios Avanzados del IPN, AP 14-740, Ciudad de Mexico´ 07000, Mexico Accepted 2017 December 8. Received 2017 December 8; in original form 2017 January 4 ABSTRACT Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose–Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high- resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein–Klein–Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Arxiv:1108.0403V1 [Astro-Ph.CO] 1 Aug 2011 Esitps Hleg Oglx Omto Oesadthe and Models Formation Galaxy at to Tion
    Noname manuscript No. (will be inserted by the editor) Production of dust by massive stars at high redshift C. Gall · J. Hjorth · A. C. Andersen To be published in A&A Review Abstract The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust forma- tion. At z > 6 only stars of relatively high mass (> 3 M⊙) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production ef- ficiency of stars in the mass range 3–40 M⊙ using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 M⊙) asymptotic giant branch stars can only be −3 dominant dust producers if SNe generate . 3 × 10 M⊙ of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust pro- duction at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium. C. Gall Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark Tel.: +45 353 20 519 Fax: +45 353 20 573 E-mail: [email protected] J.
    [Show full text]
  • Why Gravity Cannot Be Quantized Canonically, and What We Can We Do About It
    WHY GRAVITY CANNOT BE QUANTIZED CANONICALLY, AND WHAT WE CAN WE DO ABOUT IT Philip D. Mannheim Department of Physics University of Connecticut Presentation at Miami 2013, Fort Lauderdale December 2013 1 GHOST PROBLEMS, UNITARITY OF FOURTH-ORDER THEORIES AND PT QUANTUM MECHANICS 1. P. D. Mannheim and A. Davidson, Fourth order theories without ghosts, January 2000 (arXiv:0001115 [hep-th]). 2. P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A 71, 042110 (2005). (0408104 [hep-th]). 3. P. D. Mannheim, Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37, 532 (2007). (arXiv:0608154 [hep-th]). 4. C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008). (arXiv:0706.0207 [hep-th]). 5. C. M. Bender and P. D. Mannheim, Giving up the ghost, Jour. Phys. A 41, 304018 (2008). (arXiv:0807.2607 [hep-th]) 6. C. M. Bender and P. D. Mannheim, Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78, 025022 (2008). (arXiv:0804.4190 [hep-th]) 7. C. M. Bender and P. D. Mannheim, PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues, Phys. Lett. A 374, 1616 (2010). (arXiv:0902.1365 [hep-th]) 8. P. D. Mannheim, PT symmetry as a necessary and sufficient condition for unitary time evolution, Phil. Trans. Roy. Soc. A. 371, 20120060 (2013). (arXiv:0912.2635 [hep-th]) 9. C. M. Bender and P. D. Mannheim, PT symmetry in relativistic quantum mechanics, Phys.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]