Galaxy Clusters in Radio → Non-Thermal Phenomena
Total Page:16
File Type:pdf, Size:1020Kb
GalaxyGalaxy ClustersClusters inin radioradio ÎÎ NonNon--thermalthermal phenomenaphenomena Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Tonanzintla, GH2005, 4-5 July 2005 Lecture 4 : Radio emission from cluster galaxies: Classical radio galaxies Radio – X-ray interaction Distorted structures: NAT and WAT Radio galaxies filling X-ray cavities Confinement : Trigger of radio emission: radio luminosity function Enhancement of star formation RadiogalaxiesRadiogalaxies X-ray:X-ray: ThermalThermal ggasas Radio:Radio: AA 119119 (z(z == 0.0441)0.0441) RadioRadio GalaxiesGalaxies PerseusPerseus X-rayX-ray ROSAROSATT PSPCPSPC HotHot gasgas NGC 1265 RadioRadio WSRTWSRT 4949 cmcm RadioRadio galaxiesgalaxies NGC 1275 IC310 RadioRadio galaxiesgalaxies ooff highhigh andand lowlow ppowerower havehave quitequite differentdifferent morphologiesmorphologies onon thethe largelarge scalescale (Fanaroff(Fanaroff && RileyRiley 11974)974) CygCyg AA FRFR IIII 24.24.55 -1-1 HighHigh popowewer:r: PP1.41.4 GHzGHz >> 1010 WW HzHz 3C3C 444499 24.524.5 -1-1 LowLow power:power: PP1.41.4 GHzGHz << 1010 WW HzHz FRFR II RADIORADIO GALAXIESGALAXIES ATAT INCREASINGINCREASING RADIORADIO POWERPOWER 1024 W Hz-1 at 1.4 GHz 3C 31 DA 240 4C 73.08 1026.5 W Hz-1 From Atlas of P.Leahy, powers computed With H0=75, q0=0.5 Owen and Ledlow 1994 TheThe radioradio emissionemission fromfrom INDIVIDUALINDIVIDUAL GALAXIESGALAXIES isis foufoundnd ttoo extendextend WELLWELL BEYONDBEYOND thethe physicalphysical sizesize ofof thethe hosthost opticaloptical galaxygalaxy (>(> oror >>>> 100100 kpc)kpc) ÎÎ interactioninteraction withwith thethe outerouter mmediumedium 3C3C 449449 InteractionInteraction betweenbetween thethe ICMICM andand thethe radioradio emittingemitting plasma:plasma: -- ddistortedistorted structuresstructures (NAT,(NAT, WAT)WAT) -- XX-ray-ray cavitiescavities -- cconfinementonfinement EffectsEffects ofof thethe ICMICM onon radioradio galaxies:galaxies: -- ttriggerrigger ofof radioradio emissionemission -- eenhancementnhancement ofof starstar formationformation u51 NarrowNarrow AngleAngle TailedTailed (NAT)(NAT) RadioRadio GalaxiesGalaxies ÎÎ FRFR II sourcessources bentbent atat extremeextreme aanglesngles Identified with non-dominant cluster members 0053-0160053-016 (A119)(A119) NGCNGC 12651265 (Perseus)(Perseus) Slide 11 u51 R e' il raggio di curvatura h e' la dimensione su cui la ram pressure e' trsmessa ai getti unibo, 3/15/2003 StandaStandardrd interpretainterpretation:tion: JetsJets curvedcurved byby ramram pressurepressure fromfrom highhigh velocityvelocity galaxygalaxy (Begelman(Begelman etet al.al. 1979)1979) For a fluid in motion : the total force on a volume of fluid equals the pressure on the surface enclosing the volume (Euler equation) For a unit volume: 2 2 ρ jv j ρevg = ρj = jet density R rj vj = jet velocity rj = jet radius* ρe = external density vg = galaxy velocity Centripetal force Ram pressure R = curvature radius *scale height over which the ram pressure 2 R ∼ rj (ρj/ρe)(vj/vg) is transmitted to the jet -1 Consistent with observations for vg ∼ 1000 km s • • • AA 119119 •• AA 21632163 TAILEDTAILED R.G.R.G. WITHWITH SIMILARSIMILAR ORIENTAORIENTATTIONION OFOF THETHE TAILSTAILS • • BulkBulk larglarge-e-scalescale motionsmotions iinn AA 520520 mergingmerging cclusterslusters maymay bbee tthehe dominantdominant effecteffect inin thethe formationformation ooff thesethese NNAATT structuresstructures u82 VERY NARROW TAILED STRUCTURES : A2256 (Miller et al 2003) A2255 (Miller & Owen 2003) Slide 14 u82 La potenza di break corrisponde alla transizione tra le FRI e le FRII la potenza di break e' funzione della luminosita' ottica e va come L^2 cioe' la divisione tra FRI e FRII e' funzione della magnitudine L'universalita' della RLF si puo' generalizzare agli ammassi con merging unibo, 3/20/2003 WideWide AngleAngle TailedTailed (WAT)(WAT) RadioRadio GalaxiesGalaxies ÎÎ generallygenerally associatedassociated withwith D/cDD/cD oror giangiantt eellipticalsllipticals atat thethe clustercluster ccentersenters DominantDominant galaxiesgalaxies havehave generallygenerally aa tootoo sslowlow velocityvelocity (<(< 100100 kmkm ss-1-1)) toto bendbend thethe jetsjets byby ramram pressurepressure u18 Other suggested possibilities: -electromagnetic force between the jet and B field -collisions with clouds (Eilek et al. 1984) 3C3C 465465 (A2634)(A2634) Slide 15 u18 meccanismi alternativi per piegare le WAT: - forza elettromagnetica tra il getto che porta una corrente e il campo magn. intergalattico - deflessione per collisione con nubi dense - galleggiamento (buoyancy) unibo, 3/15/2003 Interpretation is that ram pressure gradients arise from large scale gas motions during cluster mergers: typical velocities ∼ 1000 km s-1 u18 A562A562 (G(Gόόmezmez eett aal.l. 1997)1997) Slide 16 u18 meccanismi alternativi per piegare le WAT: - forza elettromagnetica tra il getto che porta una corrente e il campo magn. intergalattico - deflessione per collisione con nubi dense - galleggiamento (buoyancy) unibo, 3/15/2003 RadioRadio galaxiesgalaxies fillingfilling XX-ray-ray CavitiesCavities atat thethe centercenter ofof coolingcooling corescores 3C3C 8484 NGCNGC 12751275 (Perseus) (Perseus) CHANDRACHANDRA (Fabian(Fabian etet al.al. 2000,2000, 2001)2001) 19931993 -- RROSATOSAT ((BöhringerBöhringer eett aal.)l.) 350 kpc LargeLarge ssccaalele radioradio emissioemissionn u25 RBSRBS 797797 zz =0.35=0.35 (Gitti(Gitti etet alal inin prepprep 2005)2005) Slide 18 u25 Jets of radio sources could provide the energy required to stop the copious amount of gas from cooling at low temperatures in the cooling cores of clusters altri casi di cavita': A2052, A496, A2199 unibo, 3/26/2003 ConfinementConfinement A119A119 ICMICM cconfinesonfines thethe radioradio llobesobes ÎÎ TheThe radioradio emittingemitting regionsregions inin radioradio galaxiesgalaxies aarere inin pressurepressure equilibriumequilibrium withwith thethe externalexternal thermalthermal pplasmalasma inin clustercluster PressurePressure ooff thethe X-rayX-ray ggas:as: 2nkT2nkT ∼∼ 1010-10-10-10-10-13-13 dyndyn ccmm-3-3 PressurePressure withinwithin thethe radioradio lobes:lobes: ∼∼ 1010-12-12-10-10-14-14 dyndyn ccmm-3-3 ÎÎ derivedderived fromfrom equipartition:equipartition: EErelrel ∼∼ EEHH underunder assumptionsassumptions onon geometry,geometry, spectrumspectrum νν11,,νν22 kk == EEproprott/E/Eelel == 11 ΦΦ == fillingfilling factorfactor == 11 AA 22552255 A2255 3C 449 Interpretations of apparent unbalance: ♦ equipartition holds but with different assumptions - projection effects - presence of low energy electrons - different energy in protons and electrons - filling factor ≠ 1 ♦ thermal plasma mixed within the relativistic plasma ♦ conditions different from equipartition u24 ProbabilityProbability ofof radioradio emissionemission Is the radio emission of a galaxy affected by the fact that the galaxy belongs to a cluster ? gal-gal interaction Î trigger r.e. more powerful or long lived r.e. RadioRadio LuminosityLuminosity FunctionFunction (RLF):(RLF): ProbabilProbabilityity tthathat aa galaxygalaxy inin aa defineddefined samplesample emitsemits wwithith rradioadio powerpower inin thethe intervalinterval PP ±± dPdP n( ∆Pi ) n = number of galaxies detected in the power f( P ) = interval ∆P N( ∆P ) i i N = total number of optical galaxies which could have been detected in the same bin Integral function F(>P) can be obtained simply by summing the data of all bins up to P Slide 25 u24 La potenza di break corrisponde alla transizione tra le FRI e le FRII la potenza di break e' funzione della luminosita' ottica e va come L^2 cioe' la divisione tra FRI e FRII e' funzione della magnitudine L'universalita' della RLF si puo' generalizzare agli ammassi con merging unibo, 3/20/2003 u81 The local RLF of elliptical galaxies (cluster + field) can be described by two exponential laws with a break at a power P*: this corresponds to the transition between FRI and FRII radio galaxies 22 NOTE that radio galaxies with P1.4 > 10 W/Hz are AGN It is found that the local P* RLF is the same for cluster and field galaxies Î all radio galaxies live in a cluster like environment Auriemma et al 1977 Meier et al 1979 Best et al 2005 Fanti 1984 Ledlow & Owen 1994,1996 FractionalFractional locallocal ff(P)(P) forfor eellipticallliptical ggalaxiesalaxies ((z<0.1)z<0.1) Slide 26 u81 La potenza di break corrisponde alla transizione tra le FRI e le FRII la potenza di break e' funzione della luminosita' ottica e va come L^2 cioe' la divisione tra FRI e FRII e' funzione della magnitudine L'universalita' della RLF si puo' generalizzare agli ammassi con merging unibo, 3/20/2003 Comparison of the RLF in different magnitude ranges shows that the probability of a galaxy to develop a radio source is strongly dependent on the galaxy optical luminosity Î Bivariate RLF f(P,M): probability that a galaxy with absolute magnitude in the range M ± dM is radioemitting in the radio power range P ± dP Integral RLF : F(>P,M) u82 Integral bivariate RLF for ellipticals at z < 0.1 Îbrighter optical galaxies (more massive) have a higher probability of forming a radio source P* depends on optical luminosity L following the law P*∝L2 No difference between RLF of cluster anf field galaxies Note : plot obtained by Ledlow and Owen (1996) -1 -1 with H=50 km s Mpc q0=0.5 Slide 28 u82 La potenza di break corrisponde alla transizione tra le FRI e le FRII la potenza di break e' funzione della luminosita' ottica e va come L^2 cioe' la divisione tra FRI e FRII e' funzione della magnitudine L'universalita'