A Dissertation Entitled Star Cluster Populations in the Spiral Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Star Cluster Populations in the Spiral Galaxy A Dissertation entitled Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics Dr. Rupali Chandar, Committee Chair Dr. John-David Smith, Committee Member Dr. Steven Federman, Committee Member Dr. Bo Gao, Committee Member Dr. Bradley Whitmore, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2015 Copyright 2015, Lesley A. Simanton This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo August 2015 Most stars form in groups and clusters. Stars clusters range in age from very young (< 3 Myr, embedded in gas clouds) to some of the most ancient objects in the universe (> 13 Gyr), providing clues to the formation and evolution of their host galaxies. Our knowledge of the diversity of star cluster populations has expanded over the last few decades, especially by being able to examine star clusters outside of the Milky Way (MW). In this dissertation, we continue this expansion of extragalactic star cluster studies by examining the star cluster system of the nearby spiral galaxy M101. We utilize photometry from Hubble Space T elescope images to assess luminosity, color, size, and spatial distributions of old star clusters, and spectroscopy from the Gemini- North telescope to determine ages, metallicities, and velocities of a subset of both young and old clusters in M101. We find that the range of cluster luminosities, ages, and metallicities in M101 is nearly continuous. We discover a population of fairly massive, old disk clusters, and conclude that the disk of M101 may have had a higher rate of cluster formation in the past than in the MW, and that it may be better suited to cluster survival. We find evidence that some clusters in M101 have intermediate ages of several Gyr, whereas the MW has few such clusters. Our analysis of the velocities of young clusters suggests that they rotate with the HI gas disk, while the old globular clusters appear to be in the halo. iii This work is dedicated to my all of family and friends, especially to my parents, Robert and Joyce Simanton, and my great aunt, Donna Simanton, who made my education possible; to my sister and lifelong friend, Wendy Holland; and to my very supportive and motivating fianc´e,Jim Coogan. Acknowledgments I would like to thank my advisor, Rupali Chandar, for all of her support, encourage- ment, and contributions to this work. She inspired my interest and excitement in star clusters and led me through many challenges and difficulties throughout my research. I would also like to thank collaborators Brad Whitmore and Bryan Miller for their contributions to this work and for answering my questions promptly and with genuine interest in my education and discoveries. I would like to thank my other committee members, Steve Federman, J. D. Smith, and Bo Gao for taking the time to give crucial input and criticisms to help shape the results and interpretation presented here. Finally, I would like to thank the graduate students at the University of Toledo De- partment of Physics and Astronomy who have furthered my understanding of physics and astronomy by helping me find the answers to questions, engaging in discussions, sharing papers, and empathizing in the sometimes frustrating day-to-day necessities of conducting scientific research. v Contents Abstract iii Acknowledgments v Contents vi List of Tables ix List of Figures x List of Abbreviations xii List of Symbols xiii 1 Introduction 1 1.1 What are Star Clusters, and What Can They Tell Us about Galaxies? 1 1.2 The Current Picture of Galaxy Formation and Evolution: How do spiral galaxies fit in? . 3 1.3 Models for Studying Extragalactic Star Clusters . 5 2 Two Populations of Old Star Clusters in the Spiral Galaxy M101 Based on HST/ACS Observations 8 2.1 Background . 8 2.2 Observations, Cluster Selection, and Completeness . 11 2.2.1 Observations . 11 vi 2.2.2 Cluster Selection . 14 2.2.3 Completeness . 29 2.3 Results and Analysis . 34 2.3.1 Cluster Luminosity Distribution . 34 2.3.2 Cluster Colors and Luminosities . 38 2.3.3 Sizes . 44 2.3.4 Spatial Distribution . 49 2.4 Discussion . 54 2.4.1 Are There Two Populations of Old Clusters in M101? . 54 2.4.2 What Are the Faint, Red Clusters in M101? . 55 2.5 Conclusions . 59 3 Gemini/GMOS Spectra of Old and Young Star Clusters in M101: Ages and Metallicities 62 3.1 Background . 62 3.2 Observations . 63 3.2.1 Cluster Candidate Selection with HST . 63 3.2.2 Gemini/GMOS Observations . 66 3.3 Results and Analysis . 74 3.3.1 Initial Age Categorization . 74 3.3.2 Measuring Ages and Metallicities Using BaSTI Models . 81 3.3.3 Ages and Metallicities . 88 3.3.4 Spatial-Metallicity Distribution . 91 3.4 Discussion . 92 3.4.1 Are There Young to Intermediate Age GCs in M101? . 92 3.4.2 Metallicities of the YMCs and GCs . 93 3.5 Conclusions . 94 vii 4 Gemini/GMOS Spectra of Old and Young Star Clusters in M101: Kinematics 96 4.1 Background . 96 4.2 Results and Analysis . 98 4.2.1 Velocity Measurements . 98 4.2.2 Velocity Distance Comparison . 101 4.2.3 Age Velocity Comparison . 106 4.2.4 Rotational Velocity Calculation and Comparison . 107 4.3 Discussion . 110 4.3.1 The Structure of M101 . 110 4.4 Conclusions . 111 5 Conclusions and Future Work 112 5.1 Searching for Faint, Old Star Clusters in Other Spiral Galaxies . 113 viii List of Tables 2.1 M101 Old Star Cluster Catalog . 15 2.2 Coefficients for Surface Density Fits . 53 3.1 Spatial and Photometric Properties of M101 Clusters with Spectra . 64 3.2 Spectroscopic Properties of M101 Cluster Spectra . 72 4.1 Kinematics of M101 Clusters with Spectra . 99 4.2 Coefficients for vcluster vs. Rsemi-minor Fits . 105 4.3 Rotational Velocity and Velocity Dispersion Comparisons . 109 ix List of Figures 1-1 Examples of MW Star Clusters . 6 1-2 Examples of LMC and M101 Star Clusters . 7 2-1 HST ACS/WFC Fields Covering M101 . 13 2-2 Radial Profiles of Stars vs. Clusters . 30 2-3 HST BV I Color Images of Typical Red M101 Star Clusters . 31 2-4 Fraction of Selected Artificial Clusters vs. mv . 32 2-5 Fraction of Selected Artificial Clusters vs. rgc . 33 2-6 Magnitude and Luminosity Distributions for Red M101 Clusters and MW GCs ...................................... 37 2-7 B − V vs. V − I for Red Clusters and YMCs in M101 . 41 2-8 B − I Color Histograms of Red M101 Clusters . 42 2-9 B − V Color Magnitude Diagram for Red M101 Clusters, MW GCs, LMC Intermediate Age Clusters, and MW Old Open Clusters . 43 2-10 reff Distribution for Red M101 Clusters and MW GCs . 46 2-11 MV vs. reff for Red M101 Clusters and MW GCs . 47 2-12 MV vs. reff for Red M101 Clusters and Artificial Clusters . 48 2-13 Positions of Red M101 Clusters . 50 2-14 rgc Distribution for Red M101 Clusters . 51 2-15 Surface Density Distributions of Red M101 Clusters and MW GCs . 52 3-1 Gemini-North Images of GMOS Mask 1 . 67 x 3-2 Gemini-North Images of GMOS Mask 2 . 68 3-3 HST BV I Color Images of M101 YMCs with Spectra . 69 3-4 HST BV I Color Images of M101 GCs with Spectra . 70 3-5 GMOS Spectra of Mask 1 YMCs . 75 3-6 GMOS Spectra of Mask 1 YMCs Continued . 76 3-7 GMOS Spectra of Mask 2 YMCs . 77 3-8 GMOS Spectra of Mask 1 GCs . 78 3-9 GMOS Spectra of Mask 1 GCs Continued . 79 3-10 GMOS Spectra of Mask 2 GCs . 80 3-11 Lick/IDS Index Defined Regions . 84 3-12 Lick/IDS Index Defined Regions Continued . 85 3-13 Index-index Model Grids From BaSTI Synthetic Spectra for Old Ages . 86 3-14 Index-index Model Grids From BaSTI Synthetic Spectra for Young Ages 87 3-15 Example of Rejected vs. Accepted Lick/IDS Indices for Fitting Ages and Metallicities . 89 3-16 [Fe/H] vs. log Age for M101 YMCs and GCs with Spectra . 90 3-17 [Fe/H] vs. rgc for M101 YMCs and GCs with Spectra . 91 4-1 Example Correlation Functions for an M101 YMC and GC . 102 4-2 Positions of the M101 YMCs and GCs with Spectra . 103 4-3 HI Gas Map with Line-of-Sight Velocity Contours . 104 4-4 vcluster vs. Rsemi-minor for the M101 YMCs and GCs with Spectra . 105 4-5 vcluster − vdisk vs. log Age for M101 YMCs and GCs with Spectra . 106 4-6 vrot vs. rgc for the M101 YMCs and HI Gas . 108 5-1 HST /WFC3 Field in NGC 6946 . 115 xi List of Abbreviations MW . Milky Way GC . globular cluster YMC . young massive cluster LMC . Large Magellanic Cloud SSP . simple stellar population LF . luminosity function HST ..................... Hubble Space T elescope WFPC2 . Wide Field Planetary Camera 2 ACS . Advanced Camera for Surveys CMD . color magnitude diagram WFC . Wide Field Channel PSF . point spread function S/N . signal-to-noise ratio FWHM .
Recommended publications
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • Stellar Population Gradient in Lenticular Galaxies: NGC 1023, NGC 3115 and NGC 4203
    A&A 410, 803–812 (2003) Astronomy DOI: 10.1051/0004-6361:20031261 & c ESO 2003 Astrophysics Stellar population gradient in lenticular galaxies: NGC 1023, NGC 3115 and NGC 4203 M. Bassin1 and Ch. Bonatto1 Universidade Federal do Rio Grande do Sul, Instituto de F´ısica, CP 15051, Porto Alegre CEP 91501-970, RS, Brazil Received 11 March 2003 / Accepted 2 July 2003 Abstract. We investigate the stellar population content in the lenticular galaxies NGC 1023, NGC 3115 and NGC 4203 applying a population synthesis method based on a seven component spectral basis with different ages – 2.5 106,10 106,25 106,75 106, 200 106,1.2 109 and older than 1010 years, and metallicity in the range 1.3 ×[Z/Z ] × 0.2. This× study employs× two-dimensional× × STIS spectra in the range λλ2900–5700 Å, obtained from the Hubble− ≤ Space Telescope ≤− public archives. We extracted one-dimensional spectra in adjacent windows 100 pc wide (projected distance) from the nuclear regions up to 300–400 pc. The largest contribution, both in λ5870 Å flux and mass fraction, comes from old stars (age > 1010 years). We verified the possible existence of circumnuclear bursts (CNBs) in NGC 3115 and NGC 4203. Key words. galaxies: elliptical and lenticular, cD – galaxies: stellar content – galaxies: nuclei 1. Introduction the purpose of determining the star formation history in galax- ies based on integrated properties. A precise determination of properties of the stellar content of Two main approaches have been considered: evolutionary galaxies is clearly an important issue, since they are related synthesis, a technique to study the spectrophotometric evolu- to the galaxy formation and evolution.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • The SLUGGS Survey: the Assembly Histories of Individual Early-Type Galaxies
    MNRAS 457, 1242–1256 (2016) doi:10.1093/mnras/stv3021 The SLUGGS survey: the assembly histories of individual early-type galaxies Duncan A. Forbes,1‹ Aaron J. Romanowsky,2,3 Nicola Pastorello,1 Caroline Foster,4 Jean P. Brodie,3 Jay Strader,5 Christopher Usher6 and Vincenzo Pota3 1Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn VIC 3122, Australia 2Department of Physics and Astronomy, San Jose´ State University, One Washington Square, San Jose, CA 95192, USA 3University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 4Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 5Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 6Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK Downloaded from Accepted 2015 December 30. Received 2015 December 20; in original form 2015 September 16 ABSTRACT http://mnras.oxfordjournals.org/ Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here, we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey with the hydrodynamical simulations of Naab et al. In particular, we use the kinematics of starlight up to 4 effective radii (Re) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate at Swinburne University of Technology on May 10, 2016 that they have experienced gas-rich major mergers in their more recent past.
    [Show full text]
  • Exploring the Globular Cluster Systems of the Leo II Group and Their Global Relationships
    MNRAS 458, 105–126 (2016) doi:10.1093/mnras/stw185 The SLUGGS survey∗: exploring the globular cluster systems of the Leo II group and their global relationships Sreeja S. Kartha,1‹ Duncan A. Forbes,1 Adebusola B. Alabi,1 Jean P. Brodie,2 Aaron J. Romanowsky,2,3 Jay Strader,4 Lee R. Spitler,5,6 Zachary G. Jennings2 and Joel C. Roediger7 1Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn VIC 3122, Australia 2University of California Observatories, 1156 High St., Santa Cruz, CA 95064, USA 3Department of Physics and Astronomy, San Jose´ State University, One Washington Square, San Jose, CA 95192, USA 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 5Macquarie University, Macquarie Park, Sydney, NSW 2113, Australia 6Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 7NRC Herzberg Astronomy & Astrophysics, Victoria, BC V9E 2E7, Canada Accepted 2016 January 20. Received 2016 January 20; in original form 2015 July 23 ABSTRACT We present an investigation of the globular cluster (GC) systems of NGC 3607 and NGC 3608 as part of the ongoing SLUGGS (SAGES Legacy Unifying Globulars and GalaxieS) survey. We use wide-field imaging data from the Subaru telescope in the g, r and i filters to analyse the radial density, colour and azimuthal distributions of both GC systems. With the complementary kinematic data obtained from the Keck II telescope, we measure the radial velocities of a total of 81 GCs. Our results show that the GC systems of NGC 3607 and NGC 3608 have a detectable spatial extent of ∼15 and 13 galaxy effective radii, respectively.
    [Show full text]
  • Dwarf Galaxies
    Europeon South.rn Ob.ervotory• ESO ML.2B~/~1 ~~t.· MAIN LIBRAKY ESO Libraries ,::;,q'-:;' ..-",("• .:: 114 ML l •I ~ -." "." I_I The First ESO/ESA Workshop on the Need for Coordinated Space and Ground-based Observations - DWARF GALAXIES Geneva, 12-13 May 1980 Report Edited by M. Tarenghi and K. Kjar - iii - INTRODUCTION The Space Telescope as a joint undertaking between NASA and ESA will provide the European community of astronomers with the opportunity to be active partners in a venture that, properly planned and performed, will mean a great leap forward in the science of astronomy and cosmology ­ in our understanding of the universe. The European share, however,.of at least 15% of the observing time with this instrumentation, if spread over all the European astrono­ mers, does not give a large amount of observing time to each individual scientist. Also, only well-planned co­ ordinated ground-based observations can guarantee success in interpreting the data and, indeed, in obtaining observ­ ing time on the Space Telescope. For these reasons, care­ ful planning and cooperation between different European groups in preparing Space Telescope observing proposals would be very essential. For these reasons, ESO and ESA have initiated a series of workshops on "The Need for Coordinated Space and Ground­ based Observations", each of which will be centred on a specific subject. The present workshop is the first in this series and the subject we have chosen is "Dwarf Galaxies". It was our belief that the dwarf galaxies would be objects eminently suited for exploration with the Space Telescope, and I think this is amply confirmed in these proceedings of the workshop.
    [Show full text]
  • Gas Accretion from Minor Mergers in Local Spiral Galaxies⋆
    A&A 567, A68 (2014) Astronomy DOI: 10.1051/0004-6361/201423596 & c ESO 2014 Astrophysics Gas accretion from minor mergers in local spiral galaxies? E. M. Di Teodoro1 and F. Fraternali1;2 1 Department of Physics and Astronomy, University of Bologna, 6/2, Viale Berti Pichat, 40127 Bologna, Italy e-mail: [email protected] 2 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands Received 7 February 2014 / Accepted 28 May 2014 ABSTRACT We quantify the gas accretion rate from minor mergers onto star-forming galaxies in the local Universe using Hi observations of 148 nearby spiral galaxies (WHISP sample). We developed a dedicated code that iteratively analyses Hi data-cubes, finds dwarf gas-rich satellites around larger galaxies, and estimates an upper limit to the gas accretion rate. We found that 22% of the galaxies have at least one detected dwarf companion. We made the very stringent assumption that all satellites are going to merge in the shortest possible time, transferring all their gas to the main galaxies. This leads to an estimate of the maximum gas accretion rate of −1 0.28 M yr , about five times lower than the average star formation rate of the sample. Given the assumptions, our accretion rate is clearly an overestimate. Our result strongly suggests that minor mergers do not play a significant role in the total gas accretion budget in local galaxies. Key words. galaxies: interactions – galaxies: evolution – galaxies: kinematics and dynamics – galaxies: star formation – galaxies: dwarf 1. Introduction structures in the Universe grow by several inflowing events and have increased their mass content through a small number of The evolution of galaxies is strongly affected by their capabil- major mergers, more common at high redshifts, and through an ity of retaining their gas and accreting fresh material from the almost continuous infall of dwarf galaxies (Bond et al.
    [Show full text]
  • Photometric Properties and Origin of Bulges in SB0 Galaxies
    A&A 434, 109–122 (2005) Astronomy DOI: 10.1051/0004-6361:20041743 & c ESO 2005 Astrophysics Photometric properties and origin of bulges in SB0 galaxies J. A. L. Aguerri1, N. Elias-Rosa2,E.M.Corsini3, and C. Muñoz-Tuñón1 1 Instituto de Astrofísica de Canarias, Calle via Lactea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 INAF - Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Dipartimento di Astronomia, Università di Padova, vicolo dell’Osservatorio 2, 35122 Padova, Italy Received 28 July 2004 / Accepted 11 December 2004 Abstract. We have derived the photometric parameters for the structural components of a sample of fourteen SB0 galaxies by applying a parametric photometric decomposition to their observed I-band surface brightness distribution. We find that SB0 bulges are similar to bulges of the early-type unbarred spirals, i.e. they have nearly exponential surface brightness profiles (n = 1.48 ± 0.16) and their effective radii are strongly coupled to the scale lengths of their surrounding discs (re/h = 0.20 ± 0.01). The photometric analysis alone does not allow us to differentiate SB0 bulges from unbarred S0 ones. However, three sample bulges have disc properties typical of pseudobulges. The bulges of NGC 1308 and NGC 4340 rotate faster than bulges of unbarred galaxies and models of isotropic oblate spheroids with equal ellipticity. The bulge of IC 874 has a velocity dispersion lower than expected from the Faber-Jackson correlation and the fundamental plane of the elliptical galaxies and S0 bulges. The remaining sample bulges are classical bulges, and are kinematically similar to lower-luminosity ellipticals.
    [Show full text]
  • The NGC 1023 Galaxy Group: an Anti-Hubble Flow?
    The NGC 1023 Galaxy Group: An Anti-Hubble Flow? A. D. Chernin1,2, V. P. Dolgachev1, L. M. Domozhilova1 1Sternberg Astronomical Institute, Moscow University, Moscow, Russia, 2Tuorla Observatory, University of Turku, Finland, 21 500 (Astronomy Reports, 2010, Vol. 54, No. 10, pp. 902–907; in Russian: Astronomicheski Zhurnal, 2010, Vol. 87, No. 10, pp. 979–985) Abstract We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner virialized quasi-stationary component and an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the very local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are both imbedded. Self-gravity dominates in the Local Group, while the anti-gravity produced by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. The NGC 1023 group as a whole is apparently in an ongoing state of formation and virialization. We may expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4–3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.
    [Show full text]
  • Black Hole Math Is Designed to Be Used As a Supplement for Teaching Mathematical Topics
    National Aeronautics and Space Administration andSpace Aeronautics National ole M a th B lack H i This collection of activities, updated in February, 2019, is based on a weekly series of space science problems distributed to thousands of teachers during the 2004-2013 school years. They were intended as supplementary problems for students looking for additional challenges in the math and physical science curriculum in grades 10 through 12. The problems are designed to be ‘one-pagers’ consisting of a Student Page, and Teacher’s Answer Key. This compact form was deemed very popular by participating teachers. The topic for this collection is Black Holes, which is a very popular, and mysterious subject among students hearing about astronomy. Students have endless questions about these exciting and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills the gap by presenting black hole concepts in their simplest mathematical form. General Approach: The activities are organized according to progressive difficulty in mathematics. Students need to be familiar with scientific notation, and it is assumed that they can perform simple algebraic computations involving exponentiation, square-roots, and have some facility with calculators. The assumed level is that of Grade 10-12 Algebra II, although some problems can be worked by Algebra I students. Some of the issues of energy, force, space and time may be appropriate for students taking high school Physics. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr.
    [Show full text]