University of Groningen Kinematic Properties of Early-Type Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Kinematic Properties of Early-Type Galaxy University of Groningen Kinematic properties of early-type galaxy haloes using planetary nebulae Coccato, L.; Gerhard, O.; Arnaboldi, M.; Das, P.; Douglas, N. G.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J. Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1111/j.1365-2966.2009.14417.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Coccato, L., Gerhard, O., Arnaboldi, M., Das, P., Douglas, N. G., Kuijken, K., Merrifield, M. R., Napolitano, N. R., Noordermeer, E., Romanowsky, A. J., Capaccioli, M., Cortesi, A., De Lorenzi, F., & Freeman, K. C. (2009). Kinematic properties of early-type galaxy haloes using planetary nebulae. Monthly Notices of the Royal Astronomical Society, 394(3), 1249-1283. https://doi.org/10.1111/j.1365-2966.2009.14417.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 Mon. Not. R. Astron. Soc. 394, 1249–1283 (2009) doi:10.1111/j.1365-2966.2009.14417.x Kinematic properties of early-type galaxy haloes using planetary nebulae L. Coccato,1† O. Gerhard,1 M. Arnaboldi,2,3 P. Das, 1 N. G. Douglas,4 K. Kuijken,5 M. R. Merrifield,6 N. R. Napolitano,7 E. Noordermeer,6 A. J. Romanowsky,8,9 M. Capaccioli,10,11 A. Cortesi,6 F. De Lorenzi1 and K. C. Freeman12 Downloaded from https://academic.oup.com/mnras/article-abstract/394/3/1249/1065074 by University of Groningen user on 13 December 2018 1Max-Plank-Institut fur¨ Extraterrestrische Physik, Giessenbachstraße, D-85741 Garching bei Munchen,¨ Germany 2European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei Munchen,¨ Germany 3INAF, Osservatorio Astronomico di Pino Torinese, I-10025 Pino Torinese, Italy 4Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, the Netherlands 5Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, the Netherlands 6School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD 7INAF-Observatory of Capodimonte, Salita Moiariello, 16, 80131, Naples, Italy 8UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA 9Departamento de F´ısica, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 10Dipartimento di Scienze Fisiche, Universita´ Federico II, Via Cinthia, 80126, Naples, Italy 11INAF-VSTceN, Salita Moiariello, 16, 80131, Naples, Italy 12Research School of Astronomy & Astrophysics, ANU, Canberra, Australia Accepted 2008 December 18. Received 2008 December 18; in original form 2008 September 15 ABSTRACT We present new planetary nebulae (PNe) positions, radial velocities and magnitudes for six early-type galaxies obtained with the Planetary Nebulae Spectrograph (PNS), along with derived two-dimensional velocity and velocity dispersion fields, and the α parameters (i.e. the number of PNe per unit luminosity). We also present new deep absorption-line long- slit kinematics for three galaxies in the sample, obtained with the FOcal Reducer and low dispersion Spectrograph (FORS2) at the Very Large Telescope (VLT). We extend this study to include additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, including previous PNS studies, in order to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar absorption-line kinematics to typically several and up to 8 effective radii. The combination of photometry, absorption-line and PNe kinematics shows (i) a good agreement between the PNe number density distribution and the stellar surface brightness in the region where the two data sets overlap; (ii) a good agreement between PNe and absorption- line kinematics; (iii) that the mean rms velocity profiles fall into two groups, with part of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; (iv) a larger variety of velocity dispersion radial profiles; (v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotator galaxies; (vi) that outer haloes are characterized by more complex radial profiles of the specific angular momentum-related λR parameter than observed within 1 Re; (vii) that many objects are more rotationally dominated at large radii than in their central parts and (viii) that the halo kinematics are correlated with other galaxy properties, such as total B band and X-ray Based in part on observations made with the William Herschel Telescope operated by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos on the island of La Palma, of the Instituto de Astrof´ısica de Canarias, and on observations collected at the European Southern Observatory, Chile, Program: 76.B-0788(A). †E-mail: [email protected] C 2009 The Authors. Journal compilation C 2009 RAS 1250 L. Coccato et al. luminosity, isophotal shape, total stellar mass, V/σ and α parameter, with a clear separation between fast and slow rotators. Key words: galaxies: elliptical and lenticular, cD – galaxies: general – galaxies: haloes – galaxies: kinematics and dynamics. Downloaded from https://academic.oup.com/mnras/article-abstract/394/3/1249/1065074 by University of Groningen user on 13 December 2018 Some of the main aims of galaxy formation studies are to under- 1 INTRODUCTION stand the mechanisms that allow galaxies to evolve from the blue The dynamics of galaxies provide fundamental information on their cloud to the red sequence, and to differentiate between processes origin and evolution. Our knowledge of the kinematics and dy- that form early-type galaxies that are fast or slow rotators. Numer- namics of early-type galaxies is mainly based on measurements ical simulations suggest that red-sequence galaxies are formed by of the first four moments of the line-of-sight velocity distribution mergers of galaxies in the blue cloud, followed by a quenching (LOSVD) from stellar absorption lines. These measurements are of the star formation (e.g. Cattaneo et al. 2006; Faber et al. 2007; generally confined to within 1–2 effective radii (Re) and can be Kang, van den Bosch & Pasquali 2007; Romeo et al. 2008). The obtained with long slits or integral-field units. Detailed LOSVD less-luminous fast rotators with discy isophotes are preferentially measurements for early-type galaxies (e.g. Bender, Saglia & formed through a series of minor mergers with less massive com- Gerhard 1994; Fisher 1997; Pinkney et al. 2003; Emsellem et al. panions. On the other hand, the more-luminous slow rotators with 2004) have provided us with a general picture of their dynamics. boxy isophotes are thought to form through a violent major merger The higher-order moments are needed to obtain good constraints on between galaxies of similar mass (e.g. Naab, Burkert & Hernquist the anisotropy and mass distribution (Gerhard 1993; Merritt 1993). 1999; Naab & Burkert 2003), or through multiple or hierarchical Most of the studied objects appear to be isotropic or slightly radi- mergers (Weil & Hernquist 1996; Burkert et al. 2008). ally anisotropic systems (Kronawitter et al. 2000; Cappellari et al. These formation mechanisms are complicated further by the pres- 2006). Some galaxies have revealed the presence of cold stellar ence or absence of gas during the merger event, which plays a discs whose kinematics stand out only after 1–1.5 Re (Rix, Carollo fundamental role in the final kinematic structure of the merger rem- & Freeman 1999). nant (e.g. Barnes & Hernquist 1996; Naab, Jesseit & Burkert 2006; Kinematics of early-type galaxies are related to their isopho- Ciotti, Lanzoni & Volonteri2007). Mergers producing red-sequence tal shape. Deviations of the isophotes from a perfect ellipse galaxies dominated by rotation appear to be gas-rich (wet), while are parametrized by the amplitude a4 of the cos 4θ term in a gas-poor (dry) mergers produce red-sequence galaxies dominated Fourier expansion of the isophote radius in polar coordinates (e.g. by random motions (e.g. Bournaud, Jog & Combes 2005; Cox et al. Bender, Doebereiner & Moellenhoff 1988). Observational evidence 2006; Naab et al. 2006). (e.g. Bender 1988; Kormendy & Djorgovski 1989) implies that discy However, observations show that many of the most massive early- ellipticals (a4 > 0) have significant rotation with V/σ ≥ 1 and may type galaxies were already in place by z ∼ 2 (van Dokkum et al. generally be axisymmetric; boxy ellipticals (a4 < 0) exhibit no ro- 2004; Treu et al. 2005), and the evolution of the galaxy luminosity tation, have a range of values of V/σ including strongly anisotropic function since redshifts of z ∼ 1 argues against a significant contri- systems (V/σ 1), may be triaxial and are in general more mas- bution of recent dissipationless dry mergers to the formation of the sive than discy ellipticals.
Recommended publications
  • A Dissertation Entitled Star Cluster Populations in the Spiral Galaxy
    A Dissertation entitled Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics Dr. Rupali Chandar, Committee Chair Dr. John-David Smith, Committee Member Dr. Steven Federman, Committee Member Dr. Bo Gao, Committee Member Dr. Bradley Whitmore, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2015 Copyright 2015, Lesley A. Simanton This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Star Cluster Populations in the Spiral Galaxy M101 by Lesley A. Simanton Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo August 2015 Most stars form in groups and clusters. Stars clusters range in age from very young (< 3 Myr, embedded in gas clouds) to some of the most ancient objects in the universe (> 13 Gyr), providing clues to the formation and evolution of their host galaxies. Our knowledge of the diversity of star cluster populations has expanded over the last few decades, especially by being able to examine star clusters outside of the Milky Way (MW). In this dissertation, we continue this expansion of extragalactic star cluster studies by examining the star cluster system of the nearby spiral galaxy M101. We utilize photometry from Hubble Space T elescope images to assess luminosity, color, size, and spatial distributions of old star clusters, and spectroscopy from the Gemini- North telescope to determine ages, metallicities, and velocities of a subset of both young and old clusters in M101.
    [Show full text]
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • Stellar Population Gradient in Lenticular Galaxies: NGC 1023, NGC 3115 and NGC 4203
    A&A 410, 803–812 (2003) Astronomy DOI: 10.1051/0004-6361:20031261 & c ESO 2003 Astrophysics Stellar population gradient in lenticular galaxies: NGC 1023, NGC 3115 and NGC 4203 M. Bassin1 and Ch. Bonatto1 Universidade Federal do Rio Grande do Sul, Instituto de F´ısica, CP 15051, Porto Alegre CEP 91501-970, RS, Brazil Received 11 March 2003 / Accepted 2 July 2003 Abstract. We investigate the stellar population content in the lenticular galaxies NGC 1023, NGC 3115 and NGC 4203 applying a population synthesis method based on a seven component spectral basis with different ages – 2.5 106,10 106,25 106,75 106, 200 106,1.2 109 and older than 1010 years, and metallicity in the range 1.3 ×[Z/Z ] × 0.2. This× study employs× two-dimensional× × STIS spectra in the range λλ2900–5700 Å, obtained from the Hubble− ≤ Space Telescope ≤− public archives. We extracted one-dimensional spectra in adjacent windows 100 pc wide (projected distance) from the nuclear regions up to 300–400 pc. The largest contribution, both in λ5870 Å flux and mass fraction, comes from old stars (age > 1010 years). We verified the possible existence of circumnuclear bursts (CNBs) in NGC 3115 and NGC 4203. Key words. galaxies: elliptical and lenticular, cD – galaxies: stellar content – galaxies: nuclei 1. Introduction the purpose of determining the star formation history in galax- ies based on integrated properties. A precise determination of properties of the stellar content of Two main approaches have been considered: evolutionary galaxies is clearly an important issue, since they are related synthesis, a technique to study the spectrophotometric evolu- to the galaxy formation and evolution.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • The SLUGGS Survey: the Assembly Histories of Individual Early-Type Galaxies
    MNRAS 457, 1242–1256 (2016) doi:10.1093/mnras/stv3021 The SLUGGS survey: the assembly histories of individual early-type galaxies Duncan A. Forbes,1‹ Aaron J. Romanowsky,2,3 Nicola Pastorello,1 Caroline Foster,4 Jean P. Brodie,3 Jay Strader,5 Christopher Usher6 and Vincenzo Pota3 1Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn VIC 3122, Australia 2Department of Physics and Astronomy, San Jose´ State University, One Washington Square, San Jose, CA 95192, USA 3University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 4Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 5Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 6Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK Downloaded from Accepted 2015 December 30. Received 2015 December 20; in original form 2015 September 16 ABSTRACT http://mnras.oxfordjournals.org/ Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here, we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey with the hydrodynamical simulations of Naab et al. In particular, we use the kinematics of starlight up to 4 effective radii (Re) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate at Swinburne University of Technology on May 10, 2016 that they have experienced gas-rich major mergers in their more recent past.
    [Show full text]
  • Exploring the Globular Cluster Systems of the Leo II Group and Their Global Relationships
    MNRAS 458, 105–126 (2016) doi:10.1093/mnras/stw185 The SLUGGS survey∗: exploring the globular cluster systems of the Leo II group and their global relationships Sreeja S. Kartha,1‹ Duncan A. Forbes,1 Adebusola B. Alabi,1 Jean P. Brodie,2 Aaron J. Romanowsky,2,3 Jay Strader,4 Lee R. Spitler,5,6 Zachary G. Jennings2 and Joel C. Roediger7 1Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn VIC 3122, Australia 2University of California Observatories, 1156 High St., Santa Cruz, CA 95064, USA 3Department of Physics and Astronomy, San Jose´ State University, One Washington Square, San Jose, CA 95192, USA 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 5Macquarie University, Macquarie Park, Sydney, NSW 2113, Australia 6Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 7NRC Herzberg Astronomy & Astrophysics, Victoria, BC V9E 2E7, Canada Accepted 2016 January 20. Received 2016 January 20; in original form 2015 July 23 ABSTRACT We present an investigation of the globular cluster (GC) systems of NGC 3607 and NGC 3608 as part of the ongoing SLUGGS (SAGES Legacy Unifying Globulars and GalaxieS) survey. We use wide-field imaging data from the Subaru telescope in the g, r and i filters to analyse the radial density, colour and azimuthal distributions of both GC systems. With the complementary kinematic data obtained from the Keck II telescope, we measure the radial velocities of a total of 81 GCs. Our results show that the GC systems of NGC 3607 and NGC 3608 have a detectable spatial extent of ∼15 and 13 galaxy effective radii, respectively.
    [Show full text]
  • Dwarf Galaxies
    Europeon South.rn Ob.ervotory• ESO ML.2B~/~1 ~~t.· MAIN LIBRAKY ESO Libraries ,::;,q'-:;' ..-",("• .:: 114 ML l •I ~ -." "." I_I The First ESO/ESA Workshop on the Need for Coordinated Space and Ground-based Observations - DWARF GALAXIES Geneva, 12-13 May 1980 Report Edited by M. Tarenghi and K. Kjar - iii - INTRODUCTION The Space Telescope as a joint undertaking between NASA and ESA will provide the European community of astronomers with the opportunity to be active partners in a venture that, properly planned and performed, will mean a great leap forward in the science of astronomy and cosmology ­ in our understanding of the universe. The European share, however,.of at least 15% of the observing time with this instrumentation, if spread over all the European astrono­ mers, does not give a large amount of observing time to each individual scientist. Also, only well-planned co­ ordinated ground-based observations can guarantee success in interpreting the data and, indeed, in obtaining observ­ ing time on the Space Telescope. For these reasons, care­ ful planning and cooperation between different European groups in preparing Space Telescope observing proposals would be very essential. For these reasons, ESO and ESA have initiated a series of workshops on "The Need for Coordinated Space and Ground­ based Observations", each of which will be centred on a specific subject. The present workshop is the first in this series and the subject we have chosen is "Dwarf Galaxies". It was our belief that the dwarf galaxies would be objects eminently suited for exploration with the Space Telescope, and I think this is amply confirmed in these proceedings of the workshop.
    [Show full text]
  • Gas Accretion from Minor Mergers in Local Spiral Galaxies⋆
    A&A 567, A68 (2014) Astronomy DOI: 10.1051/0004-6361/201423596 & c ESO 2014 Astrophysics Gas accretion from minor mergers in local spiral galaxies? E. M. Di Teodoro1 and F. Fraternali1;2 1 Department of Physics and Astronomy, University of Bologna, 6/2, Viale Berti Pichat, 40127 Bologna, Italy e-mail: [email protected] 2 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands Received 7 February 2014 / Accepted 28 May 2014 ABSTRACT We quantify the gas accretion rate from minor mergers onto star-forming galaxies in the local Universe using Hi observations of 148 nearby spiral galaxies (WHISP sample). We developed a dedicated code that iteratively analyses Hi data-cubes, finds dwarf gas-rich satellites around larger galaxies, and estimates an upper limit to the gas accretion rate. We found that 22% of the galaxies have at least one detected dwarf companion. We made the very stringent assumption that all satellites are going to merge in the shortest possible time, transferring all their gas to the main galaxies. This leads to an estimate of the maximum gas accretion rate of −1 0.28 M yr , about five times lower than the average star formation rate of the sample. Given the assumptions, our accretion rate is clearly an overestimate. Our result strongly suggests that minor mergers do not play a significant role in the total gas accretion budget in local galaxies. Key words. galaxies: interactions – galaxies: evolution – galaxies: kinematics and dynamics – galaxies: star formation – galaxies: dwarf 1. Introduction structures in the Universe grow by several inflowing events and have increased their mass content through a small number of The evolution of galaxies is strongly affected by their capabil- major mergers, more common at high redshifts, and through an ity of retaining their gas and accreting fresh material from the almost continuous infall of dwarf galaxies (Bond et al.
    [Show full text]
  • Photometric Properties and Origin of Bulges in SB0 Galaxies
    A&A 434, 109–122 (2005) Astronomy DOI: 10.1051/0004-6361:20041743 & c ESO 2005 Astrophysics Photometric properties and origin of bulges in SB0 galaxies J. A. L. Aguerri1, N. Elias-Rosa2,E.M.Corsini3, and C. Muñoz-Tuñón1 1 Instituto de Astrofísica de Canarias, Calle via Lactea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 INAF - Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Dipartimento di Astronomia, Università di Padova, vicolo dell’Osservatorio 2, 35122 Padova, Italy Received 28 July 2004 / Accepted 11 December 2004 Abstract. We have derived the photometric parameters for the structural components of a sample of fourteen SB0 galaxies by applying a parametric photometric decomposition to their observed I-band surface brightness distribution. We find that SB0 bulges are similar to bulges of the early-type unbarred spirals, i.e. they have nearly exponential surface brightness profiles (n = 1.48 ± 0.16) and their effective radii are strongly coupled to the scale lengths of their surrounding discs (re/h = 0.20 ± 0.01). The photometric analysis alone does not allow us to differentiate SB0 bulges from unbarred S0 ones. However, three sample bulges have disc properties typical of pseudobulges. The bulges of NGC 1308 and NGC 4340 rotate faster than bulges of unbarred galaxies and models of isotropic oblate spheroids with equal ellipticity. The bulge of IC 874 has a velocity dispersion lower than expected from the Faber-Jackson correlation and the fundamental plane of the elliptical galaxies and S0 bulges. The remaining sample bulges are classical bulges, and are kinematically similar to lower-luminosity ellipticals.
    [Show full text]
  • The NGC 1023 Galaxy Group: an Anti-Hubble Flow?
    The NGC 1023 Galaxy Group: An Anti-Hubble Flow? A. D. Chernin1,2, V. P. Dolgachev1, L. M. Domozhilova1 1Sternberg Astronomical Institute, Moscow University, Moscow, Russia, 2Tuorla Observatory, University of Turku, Finland, 21 500 (Astronomy Reports, 2010, Vol. 54, No. 10, pp. 902–907; in Russian: Astronomicheski Zhurnal, 2010, Vol. 87, No. 10, pp. 979–985) Abstract We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner virialized quasi-stationary component and an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the very local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are both imbedded. Self-gravity dominates in the Local Group, while the anti-gravity produced by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. The NGC 1023 group as a whole is apparently in an ongoing state of formation and virialization. We may expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4–3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.
    [Show full text]