Piezoelectricity
Total Page:16
File Type:pdf, Size:1020Kb
Piezoelectricity • Polarization does not disappear when the electric field removed. • The direction of polarization is reversible. Polarization saturation Ps Remenent polarization Pr +Vc Voltage Coercive voltage Figure by MIT OCW FRAM utilize two stable positions. Figure by MIT OCW 15 Sang-Gook Kim, MIT Hysterisis ) 2 m c / C µ ( n o i t a z i r a l o P Electric Field (kV/cm) Ferroelectric (P-E) hysteresis loop. The circles with arrows indicate the polarization state of the material for different fields. 16 Sang-Gook Kim, MIT Figure by MIT OCW. Domain Polarization • Poling: 100 C, 60kV/cm, PZT • Breakdown: 600kV/cm, PZT •Unimorphcantilever Sang-Gook Kim, MIT 17 Piezoelectricity Direct effect D = Q/A = dT E = -gT T = -eE Converse effect E = -hS S = dE g = d/ε = d/Kε o • D: dielectric displacement, electric flux density/unit area • T: stress, S: strain, E: electric field • d: Piezoelectric constant, [Coulomb/Newton] Free T d = (∂S/∂E) T = (∂D/∂T) E Boundary Conditions Short circuit E g = (-∂E/∂T) D = (∂S/∂D) T Open circuit D e = (-∂T/∂E)S = (∂D/∂S) E h = (-∂T/∂D) = (-∂E/∂S) Clamped S S D Sang-Gook Kim, MIT 18 Principles of piezoelectric Electric field(E) g β Ele -h c tr ct ε o fe - f th e e c r ri Dielectric m t a Displacement(D) l ec e el f o d fe -e c iez d t P g -e Strain(S) Entropy -h s Stress(T) c Temperature Thermo-elastic effect Sang-Gook Kim, MIT 19 Equation of State Basic equation E d-form Sij = sijkl Tkl+dkijEk cE = 1/sE T E Di = diklTkl+ εik Ek e = dc g-form S = sDT+gD E T E ε = ε -dc dt T E = -gT+ β D βT = 1/εT E T e-form Tij = cijkl Skl-ekijEk g = d/ε D = e S + ε SE D E T -1 i kij kl ik k s = s -dt(ε ) d h-form T = cDS-hD D = Q/A E = -hS+βSD S = F/A Sang-Gook Kim, MIT 20 Equation of states D = dT + ε T E S = s ET + dE direct converse Tensor to Matrix notation For cylindrical symmetry, and poling in axis 3, D1 = ε1 E1 + d15T5 3 D 2 = ε1 E 2 + d15T4 D = ε E + d (T + T ) + d T 3 3 3 31 1 2 33 3 6 S = s T + s T + s T + d E 2 1 11 1 12 2 13 3 31 3 5 4 S2 = s11T2 + s12T1 + s13T3 + d 31 E 3 1 S3 = s13 (T1 + T2 ) + s33T3 + d 33 E 3 S4 = s 44T4 + d15 E 2 S5 = s 44T5 + d15 E1 S6 = s66T6 Sang-Gook Kim, MIT 21 Applications of piezoelectric Pressure sensors Sensors Accelerometers Gyroscopes Power generators Vibrators Ultrasonic transducers Resonators / Filters / Switches Actuators Surface Acoustic wave(SAW) devices Transformers Actuators Ultrasonic motors Sang-Gook Kim, MIT 22 Piezoelectric Charge Constants Electrical energyActuator Mechanical energy Longitudinal (d33) Transverse (d31) Shear (d15) Diagram removed for copyright reasons. Diagram removed for copyright reasons. Source: Piezo Systems, Inc. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." "Introduction to Piezo Transducers." E P http://www.piezo.com/bendedu.html http://www.piezo.com/bendedu.html ΔL/L = d31 ·E Shear strain ∆T/T = d33 ·E = d15 E Sang-Gook Kim, MIT 23 Piezoelectric Charge Constants Mechanical energySensor Electrical energy Longitudinal (d33) Transverse (d31) Multi-layer (d33) Diagram removed for copyright reasons. Diagram removed for copyright reasons. Diagram removed for copyright reasons. Source: Piezo Systems, Inc. Source: Piezo Systems, Inc. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." "Introduction to Piezo Transducers." http://www.piezo.com/bendedu.html "Introduction to Piezo Transducers" http://www.piezo.com/bendedu.html http://www.piezo.com/bendedu.html Q = d ·F Q = d33 ·Fin 31 in Q = n ·d33 ·Fin Vout/T = g33 ·Fin /(L · W) Vout /T= g31 ·Fin/(T · W) Vout /T= t/n · g33 ·Fin /(LW) 24 Sang-Gook Kim, MIT d31 vs d33 Homework 2: Compare generated voltages V31 (from d31mode), V33 (d33mode). Both have same cantilever dimension, but different electrodes. Assume, g33=2g31 tpzt=o.5 µ d=5 µ d33=200 pC/n length=100 µ, width=50 µ K=1000 Young’s modulus of the beam= 65 Gpa, max. strain = 0.1% Interdigitated Electrode + - + - + - + PZT layer P ZrO2 layer Membrane layer Sang-Gook Kim, MIT 25 Design of a Z-positioner Component schematic removed for copyright reasons. Physik Instrumente Z-positioner P-882.10, in http://www.pi-usa.us/pdf/2004_PICatLowRes_www.pdf, page 1-45. Ordering Number* Dimensions Nominal Max. Blocking Stiffness Electrical Resonant A x B x L Displaceme Displaceme Force [N @ [N/µm] Capacitance Frequency [mm] nt [µm @ nt [µm @ 120 V] [µF] (±20%) [kHz] 100 V] 120 V] (±10%) (±10%) P-882.10 2 x 3 x 9 7 9 215 26 0.13 135 Sang-Gook Kim, MIT 26 Sang-Gook Kim, MIT Kim, Sang-Gook Fabrication Methods for PZT thin Films thin PZT for Methods Fabrication o Annealing temperature ( C ) 1200 600 0.02 Laser ablation Laser Sputtering, CVD or CVD Film Thickness (um) Thickness Film Sol-gel 1 deposition Screen printing Screen Gas-jet Gas-jet . 100 27 Sol-Gel spin coating Advantages • Vacuum chamber not necessary (simple) • Easy composition control • Deposition on large flat substrate Disadvantages • Difficult to deposit on deep trenched surface • Higher raw material consumption Sang-Gook Kim, MIT 28 Advantage and disadvantage of PZT film Advantage Disadvantage Unlimited resolution Complex fabrication Large force generation Hysteresis Fast expansion Life cycle (1012 cycles) No magnetic fields (low cross talk) ; Fatigue, retention… Low power consumption No wear and tear for actuation Vacuum and clean room compatible Operation at cryogenic temperature Sang-Gook Kim, MIT 29 Typical Layer Structures for Sol-Gel PZT Top electrode Pt (e-beam evaporation lift-off) Piezoelectric PZT (sol-gel spinning) Bottom electrode Pt/Ti (e-beam evaporation lift-off) Diffusion barrier SiO2 or SiNx (CVD) Diffusion barrier ZrO2(sol-gel spinning) Si substrate Si substrate d31 mode d33 mode Sang-Gook Kim, MIT 30 Thermal Oxide Growth and Bottom Electrode Evaporation Tubes for growing of device diffusion barrier Evaporation of device electrodes Sang-Gook Kim, MIT Photos: MIT Microsystems Technologies Laboratory 31 Fabrication of the PZT Film PZT Sol material 18% PbO excess PZT (52/48) At 500 rpm for 3sec Spin coating and at 3000 rpm for 30sec Drying At 350°C for 5 min. (hot plate) Annealing At 650°C for 15 min. (box furnace) HCl(64%)+BOE(31%)+DI (5%) Wet etching (0.25 µm/min) Spin-coat Mitsubishi PZT sol-gel: 15% PZT(118/52/48) A6 Type Sang-Gook Kim, MIT 32 Fabrication of the PZT Film Spin coater PZT Sol material PZT sol Spin coating Drying Annealing Wet etching Annealing furnace Sang-Gook Kim, MIT Photo: MIT Microsystems Technologies Laboratory 33 PZT Patterning Patterned PZT on device PZT PZT bottom electrode bottom electrode cantilever gratings top electrode thin-film PZT bottom electrode Sang-Gook Kim, MIT 34 PZT Patterning (Wet ethcing) PZT wet-etching with thick photoresist photoresist PZT film Membrane and eletrode Silicon substrate 5 µm photoresist 688 nm 256 nm PZT layer Pt/Ta layer silicon substrate HCl(64%)+BOE(31%)+DI (5%) (etch rate: 0.25 µm/min) Sang-Gook Kim, MIT 35 PZT Patterning (Wet ethcing) PZT wet-etching with thin resist photoresist PZT film Membrane and eletrode Silicon substrate photoresist residual PZT open region • large undercuts with thin (1 µm) photoresist material 1 W. Liu et al, Thin Solid Films, 2000. 2 K. Yamashita et al,Transducers ‘01, Munich. Sang-Gook Kim, MIT 36 PZT Patterning (Dry etching) PZT dry-etching with thick resist photoresist PZT film Membrane and eletrode Silicon substrate using RIE, Plamaquest (in TRL) or Plasmatherm (in EML) with BCl3:Cl2 (30:10) • stiff sidewall with thick (10 µm) photoresist material Sang-Gook Kim, MIT 37 Top Electrode Lift-Off cantilever doubly-hinged membrane d33 mode interdigitated structure bottom electrode top electrode thin-filmperforated PZT membrane PZT undercut close-up on multi-layers 100 um d31 mode sandwich structure Pt/Ti top electrode pattern by lift-off, 220 nm thick. Sang-Gook Kim, MIT 38 Micro-structure of PZT Thin Film SEM of PZT film surface Cross sectional image of PZT film Average grain size : 0.1µm PZT thickness = 510 ± 40 nm; Pt thickness = 200 nm. Using SEM Sang-Gook Kim, MIT 39 PZT XRD On Various Bottom Electrode Combinations Pt(111) PZT(011) PZT/Pt/Ti/SiNx - no hillocks PZT(111) PZT(112) PZT(001) PZT(002) PZT(102) Cu Kβ Pt(002) PZT/Pt/Ti/SiO2 - no hillocks Pyrochlore PZT/Pt(annealed)/Ta/SiO2 - a few hillocks Intensity (A.U.) Intensity Pyrochlore PZT/Pt(no annealed)/Ta/SiO2 - many hillocks W Lα 20 30 40 50 60 Using XRD 2θ Sang-Gook Kim, MIT 40 Electrical Measurements - PZT Ferroelectric Characterization 80 P 60 s ) 40 2 20 C/cm µ 0 2P r -20 2 Area:260x260 µm ε =1172, tanδ=0.04 -40 2 P =65µC/cm s 2 Polarization ( Polarization 2P =50µC/cm -60 r V =3V (E =60KV/cm) V c c -80 c -20 -15 -10 -5 0 5 10 15 20 Using RT-66A Applied voltage (V) • hysteresis due to domain reorientation - growth, merging and shrinkage 2 • saturation polarization, Ps at 65 µC/cm 2 • remnant polarization, 2Pr at 50 µ C/cm Sang-Gook Kim, MIT 41 Piezoelectric Fatigue Analysis PZT characteristics against number of cycles 120 100 1.5E10 cycles 80 3.1E10 cycles 60 value 40 1st run 3.9E10 cycles 2nd run 20 5V-19.6µs-rectangular pulse-train Percentage initial change from dons-d14F 0 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12 Using RT-66A fatigue cycles • PZT electrical fatigue up to more than 1E10 cycles • characteristics recovered on 2nd run with same device Sang-Gook Kim, MIT 42 Piezoelectric Displacement Analysis 0.035 Saturation voltage ~ +/- 15V ) 0.03 0.025 0.02 0.015 0.01 measurement corresponding 0.005 predictions Estimated membrane strain (% membrane strain Estimated 0 -10-8-6-4-20 2 4 6 810 Applied voltage (V) 1 2 strain = d31V/t (d33=275pC/N , d31=-115pC/N ) 1 direct measurement 2 inferred from mechanical motion Sang-Gook Kim, MIT 43 Using computer microvision system.