XI Appendix 2: Ectomycorrhizal Species Detected in Douglas Fir

Total Page:16

File Type:pdf, Size:1020Kb

XI Appendix 2: Ectomycorrhizal Species Detected in Douglas Fir XI Appendix 2: Ectomycorrhizal species detected in Douglas fir plantations in other parts of the world. Species references comments Amanita fulva (Schaeff.) Fr. (6) not registered Amanita gemmata (Fr.) Bertill. (2) (6) Amanita muscaria (L.) Hook (3) (6) Amanita rubescens (Pers. ex Fr.) Gray (6) not registered Amanita rubescens var. annulosulfurea (6) not registered Gillet Boletus pulverulentus Opat. (4) not registered Clitopilus sp (3) not registered Cortinarius scaurus (Fr.) Fr. (6) Dermocybe croceocona (Fr.) M.M. (6) not registered Moser Dermocybe semisanguinea (Fr.) M.M. (6) not registered Moser Endogone flammicorona Trappe & (1) not registered Gerd. Hebeloma crustuliniforme (Bull.) Quél. (2) (3) Inocybe carpta Bres. (6) not registered Inocybe lacera (Fr.) P. Kumm. (6) Inocybe longicystis G.F. Atk. (6) not registered Inocybe mixtilloides Kuyper (6) not registered. Not included. Inocybe nappies J.E. Lange (6) Inocybe ovatocystis Kühner (6) not registered Inocybe cf. pseudoumbrina Stangl. (6) not registered Inocybe soluta Velen (6) not registered Inocybe umbrina Bres. (6) not registered Inocybe sp (2) Laccaria amethystina Cooke (3) not registered Laccaria bicolor (Maire) P.D. Orton (6) Laccaria laccata (Scop.) Fr. (3) (6) Laccaria proxima (Boud.) Pat. (6) not registered Lactarius deliciosus (L.) Gray (2) Lactarius helvus (Fr.) Fr. (6) not registered Lactarius hepaticus Plowr. (6) not registered Lactarius nacator (Bull.) Pers. (6) not registered Lactarius rufus (Scop.) Fr. (6) Lactarius theiogalus (Bull.) Fr. (6) not registered Lycoperdon gemmatum Batsch. (3) Lycoperdon perlatum Pers. (3) not registered Melanogaster ambiguus (Vittad.) Tul. (4) (5) & C. Tul. Paxillus involutus (Batsch) Fr. (6) Phallus impudicus L. (6) not registered Rhizopogon parksii A.H. Sm. (1) Rhizopogon subareolatus A.H. Sm. (4)(5) Rhizopogon vinicolor A.H. Sm. (1) (3) Russula emetica (Schaef.) Pers. (6) Russula nitida (Pers.) Fr. (6) not registered Russula ochroleuca (Pers.) Fr. (6) not registered Russula parazurea Jul. Schäff. (6) Russula sp. (3) XII Scleroderma bovista Fr. (1) (3) Scleroderma citrinum Pers (6) not registered Scleroderma verrucosum (Bull.) Pers. (1) (3) not registered Suillus lakei (Murrill) A.H. Sm. & (3) Thiers Suillus luteus (L.) Gray (1) Thelephora terrestris Ehrn. (6) Tricholoma saponaceum (Fr.) P. (4) Kumm. Tricholoma sp. (3) Tuber maculatum Vittad. (5) not registered Tuber sp. (1) Xerocomus badius (Fr.) Kühner (6) not registered Xerocomus chrysenteron (Bull.) Quél. (4) (6) not registered Xerocomus subtomentosus (L.) (6) References: “Not registered” means not registered in Appendix 1. “Not included” means it is not included in the data base “Index Fungorum” from CABI Bioscience y CBS (http://www.indexfungorum.org/Index.htm.), available on Internet. (1) Chu Chou & Grace 1983; (2) Garrido 1986; (3) Chu Chou & Grace 1981; (4) Parladé et al. 1996a. (5) Parladé et al. 1996b; (6) Jansen 1991. Note: Authors names have been checked and modified following “Index Fungorum” from CABI Bioscience y CBS, available on Internet. Bibliography CHU CHOU M., L.J. GRACE. 1983. Hypogeous fungi associated with some forest trees in New Zealand. N. Z. J. Bot. 21: 183­190. CHU CHOU M., L.J. GRACE. 1981. Mycorrhizal fungi of Pseudotsuga menziesii in the north island of New Zealand. Soil. Biol. Biochem. 13: 247­249. GARRIDO N. 1986. Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. Nova Hedw. 43: 423­442. JANSEN A.E. 1991. The mycorrhizal status of Douglas Fir in The Netherlands: its relation with stand age, regional factor, atmospheric pollutants and tree vitality. Agric. Ecos. & Envir. 35: 191­208. PARLADÉ J., I.F. ALVAREZ, J. PERA. 1996a. Ability of native ectomycorrhizal fungi from northern spain to coloniza Douglas fir and other introduced conifers. Mycorrhiza 6: 51­55. PARLADÉ J., J. PERA, I.F. ALVAREZ. 1996b. Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6: 237­245..
Recommended publications
  • A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
    International Journal of Environmental Research and Public Health Review A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms 1, 2,3, Dagmara Strumi ´nska-Parulska * and Jerzy Falandysz y 1 Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland 2 Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland; [email protected] 3 Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia * Correspondence: [email protected]; Tel.: +48-58-5235254 Jerzy Falandysz is visiting professor at affiliation 3. y Received: 22 September 2020; Accepted: 3 November 2020; Published: 6 November 2020 Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular, medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a range of mineral ionic constituents and radioactive elements to different extents, and are therefore considered as suitable bio-indicators of environmental pollution. The available literature indicates that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight (dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the activity of individual nuclides varies between mushrooms, which is of particular interest for edible species that are consumed either locally or, in some cases, also traded on an international scale.
    [Show full text]
  • Agaricineae, Agaricales) for Accommodating the Genera Mythicomyces and Stagnicola, and Simocybe Parvispora Reconsidered
    VOLUME 3 JUNE 2019 Fungal Systematics and Evolution PAGES 41–56 doi.org/10.3114/fuse.2019.03.05 Mythicomycetaceae fam. nov. (Agaricineae, Agaricales) for accommodating the genera Mythicomyces and Stagnicola, and Simocybe parvispora reconsidered A. Vizzini1*, G. Consiglio2, M. Marchetti3 1Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy 2Via Ronzani 61, I-40033 Casalecchio di Reno (Bologna), Italy 3Via Molise 8, I-56123 Pisa, Italy Key words: *Corresponding author: [email protected] Agaricomycetes Basidiomycota Abstract: The analysis of a combined dataset including 5.8S (ITS) rDNA, 18S rDNA, 28S rDNA, and rpb2 data from molecular systematics species of the Agaricineae (Agaricoid clade) supports a shared monophyletic origin of the monotypic genera new taxa Mythicomyces and Stagnicola. The new family Mythicomycetaceae, sister to Psathyrellaceae, is here proposed Phaeocollybia to name this clade, which is characterised, within the dark-spored agarics, by basidiomata with a mycenoid to Psathyrellaceae phaeocollybioid habit, absence of veils, a cartilaginous-horny, often tapering stipe, which discolours dark brown taxonomy towards the base, a greyish brown, pale hazel brown spore deposit, smooth or minutely punctate-verruculose spores without a germ pore, cheilocystidia always present, as metuloids (thick-walled inocybe-like elements) or as thin- walled elements, pleurocystidia, when present, as metuloids, pileipellis as a thin ixocutis without cystidioid elements, clamp-connections present everywhere, and growth on wood debris in wet habitats of boreal, subalpine to montane coniferous forests. Simocybe parvispora from Spain (two collections, including the holotype), which clusters with all the sequenced collections ofStagnicola perplexa from Canada, USA, France and Sweden, must be regarded as a later synonym of the latter.
    [Show full text]
  • Linking Ectomycorrhizal Mushroom Species Richness and Composition with Dominant Trees in a Tropical Seasonal Rainforest Article
    Studies in Fungi 5(1): 471–484 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/28 Linking ectomycorrhizal mushroom species richness and composition with dominant trees in a tropical seasonal rainforest Ediriweera AN 2,3,4, Karunarathna SC1,2,3,4, Xu J1,2,4 *, Bandara SMGS 7, 6 1,2 Gamage A , Schaefer DA 1CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 3Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4World Agroforestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, China 5Department of Biosystems Technology, Faculty of Technology, University of Ruhuna 6Department of Economics, Faculty of Humanities and Social Sciences, University of Ruhuna, Sri Lanka 7Department of Mathematics, Faculty of Science, University of Ruhuna Ediriweera AN, Karunarathna SC, Xu J, Bandara SMGS, Gamage A, Shaefer DA 2020 – Linking ectomycorrhizal mushroom species richness and composition with dominant trees in a tropical seasonal rainforest. Studies in Fungi 5(1), 471–484, Doi 10.5943/sif/5/1/28 Abstract Vegetation, elevation gradient and soil temperature are considered as major drivers of ECM fungi species richness. ECM sporocarps were collected during rainy seasons for two years to study the link between the distribution of ECM mushrooms with Castonopsis echinocarpa, Parashorea chinensis, and Pittosporopsis kerrii with varying elevations and soil temperatures, in a tropical rain forest Xishuangbanna, Yunnan, China.
    [Show full text]
  • High-Level Classification of the Fungi and a Tool for Evolutionary Ecological Analyses
    Fungal Diversity (2018) 90:135–159 https://doi.org/10.1007/s13225-018-0401-0 (0123456789().,-volV)(0123456789().,-volV) High-level classification of the Fungi and a tool for evolutionary ecological analyses 1,2,3 4 1,2 3,5 Leho Tedersoo • Santiago Sa´nchez-Ramı´rez • Urmas Ko˜ ljalg • Mohammad Bahram • 6 6,7 8 5 1 Markus Do¨ ring • Dmitry Schigel • Tom May • Martin Ryberg • Kessy Abarenkov Received: 22 February 2018 / Accepted: 1 May 2018 / Published online: 16 May 2018 Ó The Author(s) 2018 Abstract High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum- and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomoph- thoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example
    [Show full text]
  • 73 Supplementary Data Genbank Accession Numbers Species Name
    73 Supplementary Data The phylogenetic distribution of resupinate forms across the major clades of homobasidiomycetes. BINDER, M., HIBBETT*, D. S., LARSSON, K.-H., LARSSON, E., LANGER, E. & LANGER, G. *corresponding author: [email protected] Clades (C): A=athelioid clade, Au=Auriculariales s. str., B=bolete clade, C=cantharelloid clade, Co=corticioid clade, Da=Dacymycetales, E=euagarics clade, G=gomphoid-phalloid clade, GL=Gloephyllum clade, Hy=hymenochaetoid clade, J=Jaapia clade, P=polyporoid clade, R=russuloid clade, Rm=Resinicium meridionale, T=thelephoroid clade, Tr=trechisporoid clade, ?=residual taxa as (artificial?) sister group to the athelioid clade. Authorities were drawn from Index Fungorum (http://www.indexfungorum.org/) and strain numbers were adopted from GenBank (http://www.ncbi.nlm.nih.gov/). GenBank accession numbers are provided for nuclear (nuc) and mitochondrial (mt) large and small subunit (lsu, ssu) sequences. References are numerically coded; full citations (if published) are listed at the end of this table. C Species name Authority Strain GenBank accession References numbers nuc-ssu nuc-lsu mt-ssu mt-lsu P Abortiporus biennis (Bull.) Singer (1944) KEW210 AF334899 AF287842 AF334868 AF393087 4 1 4 35 R Acanthobasidium norvegicum (J. Erikss. & Ryvarden) Boidin, Lanq., Cand., Gilles & T623 AY039328 57 Hugueney (1986) R Acanthobasidium phragmitis Boidin, Lanq., Cand., Gilles & Hugueney (1986) CBS 233.86 AY039305 57 R Acanthofungus rimosus Sheng H. Wu, Boidin & C.Y. Chien (2000) Wu9601_1 AY039333 57 R Acanthophysium bisporum Boidin & Lanq. (1986) T614 AY039327 57 R Acanthophysium cerussatum (Bres.) Boidin (1986) FPL-11527 AF518568 AF518595 AF334869 66 66 4 R Acanthophysium lividocaeruleum (P. Karst.) Boidin (1986) FP100292 AY039319 57 R Acanthophysium sp.
    [Show full text]
  • Supplementary Fig
    TAXONOMY phyrellus* L.D. Go´mez & Singer, Xanthoconium Singer, Xerocomus Que´l.) Taxonomical implications.—We have adopted a con- Paxillaceae Lotsy (Alpova C. W. Dodge, Austrogaster* servative approach to accommodate findings from Singer, Gyrodon Opat., Meiorganum*Heim,Melano- recent phylogenies and propose a revised classifica- gaster Corda, Paragyrodon, (Singer) Singer, Paxillus tion that reflects changes based on substantial Fr.) evidence. The following outline adds no additional Boletineae incertae sedis: Hydnomerulius Jarosch & suborders, families or genera to the Boletales, Besl however, excludes Serpulaceae and Hygrophoropsi- daceae from the otherwise polyphyletic suborder Sclerodermatineae Binder & Bresinsky Coniophorineae. Major changes on family level Sclerodermataceae E. Fisch. (Chlorogaster* Laessøe & concern the Boletineae including Paxillaceae (incl. Jalink, Horakiella* Castellano & Trappe, Scleroder- Melanogastraceae) as an additional family. The ma Pers, Veligaster Guzman) Strobilomycetaceae E.-J. Gilbert is here synonymized Boletinellaceae P. M. Kirk, P. F. Cannon & J. C. with Boletaceae in absence of characters or molecular David (Boletinellus Murill, Phlebopus (R. Heim) evidence that would suggest maintaining two separate Singer) families. Chamonixiaceae Ju¨lich, Octavianiaceae Loq. Calostomataceae E. Fisch. (Calostoma Desv.) ex Pegler & T. W. K Young, and Astraeaceae Zeller ex Diplocystaceae Kreisel (Astraeus Morgan, Diplocystis Ju¨lich are already recognized as invalid names by the Berk. & M.A. Curtis, Tremellogaster E. Fisch.) Index Fungorum (www.indexfungorum.com). In ad- Gyroporaceae (Singer) Binder & Bresinsky dition, Boletinellaceae Binder & Bresinsky is a hom- (Gyroporus Que´l.) onym of Boletinellaceae P. M. Kirk, P. F. Cannon & J. Pisolithaceae Ulbr. (Pisolithus Alb. & Schwein.) C. David. The current classification of Boletales is tentative and includes 16 families and 75 genera. For Suillineae Besl & Bresinsky 16 genera (marked with asterisks) are no sequences Suillaceae (Singer) Besl & Bresinsky (Suillus S.F.
    [Show full text]
  • A Preliminary Checklist of Macrofungi of Guatemala, with Notes on Edibility and Traditional Knowledge
    Mycosphere Doi 10.5943/mycosphere/3/1/1 A preliminary checklist of macrofungi of Guatemala, with notes on edibility and traditional knowledge Flores Arzú R1, Comandini O2 and Rinaldi AC2,* 1Departamento de Microbiología, Facultad de CCQQ y Farmacia, Universidad de San Carlos de Guatemala, Ciudad Universitaria zona 12, 01012, Guatemala 2Department of Biomedical Sciences and Technologies, University of Cagliari, I–09042 Monserrato (CA), Italy Flores Arzú R, Comandini O, Rinaldi AC 2012 – A preliminary checklist of macrofungi of Guatemala, with notes on edibility and traditional knowledge. Mycosphere 3(1), 1-21, Doi 10.5943/mycosphere/3/1/1 Despite its biological wealth, current knowledge on the macromycetes inhabiting Guatemala is scant, in part because of the prolonged civil war that has prevented exploration of many ecological niches. We provide a preliminary literature–based checklist of the macrofungi occuring in the various ecological regions of Guatemala, supplemented with original observations reported here for the first time. Three hundred and fifty species, 163 genera, and 20 orders in the Ascomycota and Basidiomycota have been reported from Guatemala. Many of the entries pertain to ectomycorrhizal fungal species that live in symbiosis with the several Pinus and Quercus species that form the extensive pine and mixed forests of the highlands (up to 3600 m a.s.l.). As part of an ongoing study of the ethnomycology of the Maya populations in the Guatemalan highlands, we also report on the traditional knowledge about macrofungi and their uses among native people. These preliminary data confirm the impression that Guatemala hosts a macrofungal diversity that is by no means smaller than that recorded in better studied neighboring Mesoamerican areas, such as Mexico and Costa Rica.
    [Show full text]
  • Macrofungal Diversity of Bolu Abant Nature Park (Turkey)
    African Journal of Biotechnology Vol. 9(24), pp. 3622-3628, 14 June, 2010 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Macrofungal diversity of Bolu Abant Nature Park (Turkey) Hüseyin Servi, Ilgaz Akata* and Barbaros Çetin Department of Biology, Faculty of Science, Ankara University, 06100, Ankara Turkey. Accepted 21 May, 2010 This study was based on materials of macrofungi collected from Bolu Abant Nature Park between 2008 and 2009. As a result of field and laboratory studies, 103 taxa belonging to 34 families were identified. Five (5) taxa belong to Ascomycota and 98 to Basidiomycota. Key words: Biodiversity, macrofungi, taxonomy, Bolu Abant Nature Park. INTRODUCTION Fungi are rich and diverse groups of organisms on earth. 2009a,b,c), the total macrofungi taxa of Turkey stands at They have important roles in ecosystems, pharmacology, 1936 by the end of March 2010. Previous mycological food industry and biodegradation (Stojchev et al.,1998). investigations around the region were carried out by Öder More than 70 000 species of fungi have been described; (1972), Sümer (1982), Afyon et al. (2000), Afyon and however, some estimates of total numbers suggest that 1.5 Konuk (2002), Yaız et al. (2005, 2006) and Akata et al. million species may exist (Hawksworth, 1991; Hawksworth (2009d). But there is no detailed mycological study in et al., 1995). Macrofungi are those fungi that form large Bolu Abant Nature Park. fructifications visible without the help of a microscope and Bolu Abant Nature Park is situated 33 km south-west of they are defined here to include ascomycota and the city Bolu, in the western black sea region of Anatolia.
    [Show full text]
  • A Checklist of Coprophilous Agarics of India
    Current Research in Environmental & Applied Mycology 5 (4): 322–348(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/4/3 A Checklist of Coprophilous Agarics of India Amandeep K1*, Atri NS2 and Munruchi K2 1Bhai Gurdas Institute of Education, Sangrur-148001, Punjab, India. 2Department of Botany, Punjabi University, Patiala-147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – A Checklist of Coprophilous Agarics of India. Current Research in Environmental & Applied Mycology 5(4), 322–348, Doi 10.5943/cream/5/4/3 Abstract This checklist consists of 135 species belonging in 27 genera and 10 families of the Order Agaricales, Class Agaricomycetes, and Phylum Basidiomycota. The families, genera and species have been arranged alphabetically. The status and taxonomic placement of each taxon included in the list has been updated as per the information available on the Index Fungorum/MycoBank. At the family level, Psathyrellaceae has the highest number of coprophilous species (46) reported from India, followed by Agaricaceae and Bolbitiaceae (29 spp. each) and Strophariaceae (20 spp.). The ten most represented coprophilous genera are Conocybe (23 spp.), Panaeolus (19 spp.), Coprinopsis (14 spp.), Psilocybe (13 spp.), Agaricus (9 spp.), Lepiota and Psathyrella (6 spp. each), Coprinellus and Coprinus (5 spp. each) and Bolbitius (4 spp.). The geographical distribution of the species covers 13 States (Assam, Bihar, Gujarat, Himachal Pradesh, Jammu & Kashmir, Karnataka, Kerala, Maharashtra, Orissa, Punjab, Tamil Nadu, Uttar Pradesh and West Bengal) and 2 Union Territories (Chandigarh, New Delhi) of India. The relevant information is based on the survey of dung localities in Punjab state during the period 2007- 2011 and original information contained in 97 research papers.
    [Show full text]
  • Algae, Fungi and Lichens of Girraween National Park
    Algae, Fungi and Lichens Algae, Fungi and Lichens of Girraween National Park Compiled and edited by Vanessa Ryan References: Atlas of Living Australia - http://www.ala.org.au/ * * Species list generated via the Atlas of Living Australia (http://biocache.ala.org.au/explore/your-area#-28.856898123912487|151.94868136464845|11|Fungi), July 25, 2012. Includes records from:Queensland HerbariumFlickrGBIF recordsGlobal Biodiversity Information FacilityAustralia's Virtual HerbariumFungimapDepartment of Environment and Resource ManagementAustralian National HerbariumAustralia's Virtual HerbariumRoyal Botanic Gardens MelbourneCentre for Australian National Biodiversity ResearchEncyclopedia of Life Images - Flickr GroupNational Herbarium of VictoriaLicense and attribution details: http://www.ala.org.au/about-the-atlas/terms-of-use/ Encyclopedia of Life - http://www.eol.org Index Fungorum - http://www.indexfungorum.org/ Mycobank, International Mycological Association - http://www.mycobank.org/ Wikipedia - http://en.wikipedia.org/wiki/Main_Page "Field Guide to Australian Fungi, A" by Bruce Fuhrer; Bloomings Books Pty Ltd; Melbourne; 2011; ISBN 9781876473518 "Field Guide to Fungi of Australia, A" by A. M. Young; University of New South Wales Press Ltd; Sydney; 2010; ISBN 9780868407425 Note: It is highly likely that the records from ALA and WO are from the same source - probably the QH/QMS. I have included all references, just in case they are different. Thank you to: Nigel Fechner and Megan Prance of the Qld Herbarium and Jutta Godwin and Pat Leonard
    [Show full text]
  • An Inventory of Fungal Diversity in Ohio Research Thesis Presented In
    An Inventory of Fungal Diversity in Ohio Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in the undergraduate colleges of The Ohio State University by Django Grootmyers The Ohio State University April 2021 1 ABSTRACT Fungi are a large and diverse group of eukaryotic organisms that play important roles in nutrient cycling in ecosystems worldwide. Fungi are poorly documented compared to plants in Ohio despite 197 years of collecting activity, and an attempt to compile all the species of fungi known from Ohio has not been completed since 1894. This paper compiles the species of fungi currently known from Ohio based on vouchered fungal collections available in digitized form at the Mycology Collections Portal (MyCoPortal) and other online collections databases and new collections by the author. All groups of fungi are treated, including lichens and microfungi. 69,795 total records of Ohio fungi were processed, resulting in a list of 4,865 total species-level taxa. 250 of these taxa are newly reported from Ohio in this work. 229 of the taxa known from Ohio are species that were originally described from Ohio. A number of potentially novel fungal species were discovered over the course of this study and will be described in future publications. The insights gained from this work will be useful in facilitating future research on Ohio fungi, developing more comprehensive and modern guides to Ohio fungi, and beginning to investigate the possibility of fungal conservation in Ohio. INTRODUCTION Fungi are a large and very diverse group of organisms that play a variety of vital roles in natural and agricultural ecosystems: as decomposers (Lindahl, Taylor and Finlay 2002), mycorrhizal partners of plant species (Van Der Heijden et al.
    [Show full text]
  • Discovery of Biologically Active Fungal Metabolites Resulting from An
    AMC 2019 Plenary Lecture 1 PL1 Discovery of biologically active fungal metabolites resulting from an international, interdisciplinary research scenario Marc Stadler Helmholtz-Centre for Infection Research, Germany Over the past years, we have been able to build up a sustainable, international network with leading researchers from all over the world to explore systematically the mycobiota of tropical countries for their potential to produce novel chemical entities with potential to combat infectious diseases. In addition, we have targeted rare European species that are difficult to culture. Over the past 5 years, these activities have resulted in the discovery of over 150 new bioactive metabolites that were published in over 50 original publications. The key to the success of these projects was actually the collaboration of chemists with leading taxonomists and other biodiversity researchers. Most of the new compounds were isolated from new genera and species that were concurrently discovered in the course of taxonomic studies. Some of the new metabolites discovered have substantial potential for application, even though their evaluation is still in a rather early stage and it may take a long time and substantial efforts and additional funding until they even reach preclinical development. The strategy of this approach will be outlined, also including some highlights from our recent research in an international, interdisciplinary scenario. Asian Mycological Congress 2019 AMC 2019 Plenary Lecture 2 PL2 Cordyceps and cordycipitoid fungi Xingzhong Liu Institute of Microbiology, Chinese Academy of Sciences, China Cordyceps historically comprised over 400 species and some of them are used extensively in traditional Chinese medicine. In the past few decades, the pharmaceutical and cosmetics, health products developed from cordyceps have made great progress of research and development of cordyceps.
    [Show full text]