Norway 2014 Vfr Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NORWAY LOCAL SINGLE SKY IMPLEMENTATION Level2020 1 - Implementation Overview
LSSIP 2020 - NORWAY LOCAL SINGLE SKY IMPLEMENTATION Level2020 1 - Implementation Overview Document Title LSSIP Year 2020 for Norway Info Centre Reference 20/12/22/79 Date of Edition 07/04/2021 LSSIP Focal Point Peder BJORNESET - [email protected] Luftfartstilsynet (CAA-Norway) LSSIP Contact Person Luca DELL’ORTO – [email protected] EUROCONTROL/NMD/INF/PAS LSSIP Support Team [email protected] Status Released Intended for EUROCONTROL Stakeholders Available in https://www.eurocontrol.int/service/local-single-sky-implementation- monitoring Reference Documents LSSIP Documents https://www.eurocontrol.int/service/local-single-sky-implementation- monitoring Master Plan Level 3 – Plan https://www.eurocontrol.int/publication/european-atm-master-plan- Edition 2020 implementation-plan-level-3 Master Plan Level 3 – Report https://www.eurocontrol.int/publication/european-atm-master-plan- Year 2020 implementation-report-level-3 European ATM Portal https://www.atmmasterplan.eu/ STATFOR Forecasts https://www.eurocontrol.int/statfor National AIP https://avinor.no/en/ais/aipnorway/ FAB Performance Plan https://www.nefab.eu/docs# LSSIP Year 2020 Norway Released Issue APPROVAL SHEET The following authorities have approved all parts of the LSSIP Year 2020 document and the signatures confirm the correctness of the reported information and reflect the commitment to implement the actions laid down in the European ATM Master Plan Level 3 (Implementation View) – Edition 2020. Stakeholder / Name Position Signature and date Organisation -
VFR-Guide Vår 2009.Indd
2009 VFR-guide Written by Sverre H. Falkenberg Updated by Avinor and Norwegian Civil Aviation Authority (NCAA) - 2009 Photos by Anders Hamre, Anders Forseth and Thomas Hytten Questions about this publication may be directed to: Luftfartstilsynet/ Norwegian Civil Aviation Auhority Allmennfl yseksjon / General Avation Section P.O.Box 243 N-8003 BODØ NORWAY Tel. +47 75 58 50 00 Fax. +47 75 58 50 05 Be aware that the information given is for guidance only and that there may have been up- dates since this guide was published. Pilots are individually responsible for keeping them- selves posted on all current regulations within the area. They are also responsible for all actions taken before and while operating in Norwegian area. Introduction Welcome to Norway and Norwegian Airspace! This booklet is made for the purpose of assisting you, as a VFR pilot, in your planning and conduct of fl ight within Norwegian Airspace. The vast majority of the Norwegian land masses consist of mountainous terrain with countless valleys and deep fj ords. You will enjoy a spectacular scenery and great fun while fl ying in these areas, but you should also bear in mind that the environment may suddenly “bite” you during un- favourable fl ight conditions. This booklet tries to raise the awareness of such unfavourable fl ight conditions. Relevant rules and regulations applicable to VFR fl ights within Norway are covered and so is other information necessary for safe planning and conduct of fl ight. Set your own limitations and prepare for the expected so you do not -
TCAS II) by Personnel Involved in the Implementation and Operation of TCAS II
Preface This booklet provides the background for a better understanding of the Traffic Alert and Collision Avoidance System (TCAS II) by personnel involved in the implementation and operation of TCAS II. This booklet is an update of the TCAS II Version 7.0 manual published in 2000 by the Federal Aviation Administration (FAA). It describes changes to the CAS logic introduced by Version 7.1 and updates the information on requirements for use of TCAS II and operational experience. Version 7.1 logic changes will improve TCAS Resolution Advisory (RA) sense reversal logic in vertical chase situations. In addition all “Adjust Vertical Speed, Adjust” RAs are converted to “Level-Off, Level-Off” RAs to make it more clear that a reduction in vertical rate is required. The Minimum Operational Performance Standards (MOPS) for TCAS II Version 7.1 were approved in June 2008 and Version 7.1 units are expected to be operating by 2010-2011. Version 6.04a and 7.0 units are also expected to continue operating for the foreseeable future where authorized. 2 Preface................................................................................................................................. 2 The TCAS Solution............................................................................................................. 5 Early Collision Avoidance Systems................................................................................ 5 TCAS II Development .................................................................................................... 6 Initial -
FSF ALAR Briefing Note 3.2 -- Altitude Deviations
Flight Safety Foundation Approach-and-landing Accident Reduction Tool Kit FSF ALAR Briefing Note 3.2 — Altitude Deviations Altitude deviations may result in substantial loss of aircraft • The pilot-system interface: vertical separation or horizontal separation, which could cause – Altimeter setting, use of autopilot, monitoring of a midair collision. instruments and displays; or, Maneuvers to avoid other aircraft often result in injuries to • The pilot-controller interface: passengers, flight crewmembers and, particularly, to cabin crewmembers. – Communication loop (i.e., the confirmation/ correction process). Statistical Data Altitude deviations occur usually as the result of one or more of the following conditions: An analysis by the U.S. Federal Aviation Administration (FAA) and by USAir (now US Airways) of altitude-deviation events1 • The controller assigns an incorrect altitude or reassigns showed that: a flight level after the pilot was cleared to an altitude; • Approximately 70 percent of altitude deviations were the • Pilot-controller communication breakdown — mainly result of a breakdown in pilot-controller communication; readback/hearback errors such as the following: and, – Controller transmits an incorrect altitude, the pilot • Nearly 40 percent of altitude deviations resulted when does not read back the altitude and the controller does air traffic control (ATC) assigned 10,000 feet and the not challenge the absence of a readback; flight crew set 11,000 feet in the selected-altitude – Pilot reads back an incorrect altitude, but the window, or when ATC assigned 11,000 feet and the flight controller does not hear the erroneous readback and crew set 10,000 feet in the selected-altitude window. does not correct the pilot’s readback; or, Defining Altitude Deviations – Pilot accepts an altitude clearance intended for another aircraft (confusion of call signs); An altitude deviation is a deviation from the assigned altitude • Pilot receives, understands and reads back the correct (or flight level) equal to or greater than 300 feet. -
Master's Degree Thesis
Master’s degree thesis LOG950 Logistics Investigating air transports effect on regional economic development, in a Norwegian context. André Ree Number of pages including this page: 148 Molde, 23.05.2016 Mandatory statement Each student is responsible for complying with rules and regulations that relate to examinations and to academic work in general. The purpose of the mandatory statement is to make students aware of their responsibility and the consequences of cheating. Failure to complete the statement does not excuse students from their responsibility. Please complete the mandatory statement by placing a mark in each box for statements 1-6 below. 1. I/we hereby declare that my/our paper/assignment is my/our own work, and that I/we have not used other sources or received other help than mentioned in the paper/assignment. 2. I/we hereby declare that this paper Mark each 1. Has not been used in any other exam at another box: department/university/university college 1. 2. Is not referring to the work of others without acknowledgement 2. 3. Is not referring to my/our previous work without acknowledgement 3. 4. Has acknowledged all sources of literature in the text and in the list of references 4. 5. Is not a copy, duplicate or transcript of other work 5. I am/we are aware that any breach of the above will be considered as cheating, and may result in annulment of the 3. examination and exclusion from all universities and university colleges in Norway for up to one year, according to the Act relating to Norwegian Universities and University Colleges, section 4-7 and 4-8 and Examination regulations section 14 and 15. -
Chapter: 2. En Route Operations
Chapter 2 En Route Operations Introduction The en route phase of flight is defined as that segment of flight from the termination point of a departure procedure to the origination point of an arrival procedure. The procedures employed in the en route phase of flight are governed by a set of specific flight standards established by 14 CFR [Figure 2-1], FAA Order 8260.3, and related publications. These standards establish courses to be flown, obstacle clearance criteria, minimum altitudes, navigation performance, and communications requirements. 2-1 fly along the centerline when on a Federal airway or, on routes other than Federal airways, along the direct course between NAVAIDs or fixes defining the route. The regulation allows maneuvering to pass well clear of other air traffic or, if in visual meteorogical conditions (VMC), to clear the flightpath both before and during climb or descent. Airways Airway routing occurs along pre-defined pathways called airways. [Figure 2-2] Airways can be thought of as three- dimensional highways for aircraft. In most land areas of the world, aircraft are required to fly airways between the departure and destination airports. The rules governing airway routing, Standard Instrument Departures (SID) and Standard Terminal Arrival (STAR), are published flight procedures that cover altitude, airspeed, and requirements for entering and leaving the airway. Most airways are eight nautical miles (14 kilometers) wide, and the airway Figure 2-1. Code of Federal Regulations, Title 14 Aeronautics and Space. flight levels keep aircraft separated by at least 500 vertical En Route Navigation feet from aircraft on the flight level above and below when operating under VFR. -
FAA-H-8083-15, Instrument Flying Handbook -- 1 of 2
i ii Preface This Instrument Flying Handbook is designed for use by instrument flight instructors and pilots preparing for instrument rating tests. Instructors may find this handbook a valuable training aid as it includes basic reference material for knowledge testing and instrument flight training. Other Federal Aviation Administration (FAA) publications should be consulted for more detailed information on related topics. This handbook conforms to pilot training and certification concepts established by the FAA. There are different ways of teaching, as well as performing, flight procedures and maneuvers and many variations in the explanations of aerodynamic theories and principles. This handbook adopts selected methods and concepts for instrument flying. The discussion and explanations reflect the most commonly used practices and principles. Occasionally the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). All of the aeronautical knowledge and skills required to operate in instrument meteorological conditions (IMC) are detailed. Chapters are dedicated to human and aerodynamic factors affecting instrument flight, the flight instruments, attitude instrument flying for airplanes, basic flight maneuvers used in IMC, attitude instrument flying for helicopters, navigation systems, the National Airspace System (NAS), the air traffic control (ATC) system, instrument flight rules (IFR) flight procedures, and IFR emergencies. Clearance shorthand and an integrated instrument lesson guide are also included. This handbook supersedes Advisory Circular (AC) 61-27C, Instrument Flying Handbook, which was revised in 1980. -
Introduction of RVSM in the Airspace of the Russian Federation and Adjacent Territories
12ATSBL06 November 2011 Introduction of RVSM in the airspace of the Russian Federation and adjacent territories Summary At 0001 UTC 17 November RVSM was introduced in the FIRs of the Russian Federation as well as those of Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Russian Federation, Tajikistan, Turkmenistan and Uzbekistan between FL291 FL510 FL410. FL490 FL470 Background Reduced Vertical Separation Minima (RVSM) operations are due to be intro- FL450 duced into the airspace of the FIR/UIRs of the following countries: Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Russian Federation, Tajikistan, Turkmeni- FL430 stan and Uzbekistan at 00:01UTC 17 November 2011. The changeover is a land- mark not only since it is geographically the largest RVSM changeover but also FL410 because it will see vertical positioning referenced as a Flight Level throughout FL400 the affected airspace (above transition altitude) rather than in metres. The excep- tion to this is in the Ulaanbataar FIR, (see 12ATSBL07 click here) which will FL390 continue to use metric references. The information contained in this briefing leaf- FL380 let is derived from information contained in AICs issued by the Russian Federal FL370 Air Transport Agency as well as data from the Kazakh Air Navigation Service FL360 Provider (ANSP) however the procedures described in the Russian AIC will be FL350 also applied in Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan FL340 and Uzbekistan. FL330 FL320 Normal procedures FL310 RVSM Flight Levels FL300 RVSM will be applied to airspace between FL290 (8,550m) and FL410 (12,500m) FL290 inclusive. It is important to note that above transition altitude assignments in the FL280 vertical plane will be given in FL. -
Key Tips - Altimetry
Avoiding airspace infringements Key tips - Altimetry A significant number of airspace infringements are caused by pilots using an incorrect altimeter setting. The pilot may believe that they are remaining outside notified airspace, but they are actually flying higher or lower. QFE (the atmospheric pressure at aerodrome elevation) When QFE is set, your altimeter will indicate your height above the elevation of the aerodrome. This is useful in the visual circuit environment and in the ATZ. QFE should not be used elsewhere. QNH (the atmospheric pressure at mean sea level) When QNH is set your altimeter will indicate your altitude above mean sea level. When the Airfield QNH is set, the altimeter will indicate the elevation of the airfield correctly at the airfield reference point. QNH is essential for avoiding airspace which has a base defined as an altitude, and any Prohibited, Restricted or Danger Areas that have an upper limit defined as an altitude. When flying, remember to check (and update if necessary) the QNH value that you have set. This can easily be done by calling an ATSU or listening to ATIS or VOLMET broadcasts. airspacesafety.com Illustrations courtesy of NATS. Regional Pressure Setting (RPS) RPS is a forecast (not an actual) value of the lowest atmospheric pressure at mean sea level (MSL) within an Altimeter Setting Region (ASR). • When an RPS is set your altimeter will indicate your altitude above the forecast setting. • Aircraft using this setting will never be lower than the indicated altitude. RPS were introduced in the past to aid terrain clearance in large areas where there was no local QNH reporting station, or where communications were poor. -
14 CFR Ch. I (1–1–14 Edition)
§ 91.179 14 CFR Ch. I (1–1–14 Edition) be crossed at or above the applicable duced Vertical Separation Minimum MCA. (RVSM) airspace and— [Doc. No. 18334, 54 FR 34294, Aug. 18, 1989, as (i) On a magnetic course of zero de- amended by Amdt. 91–296, 72 FR 31678, June grees through 179 degrees, any odd 7, 2007; Amdt. 91–315, 75 FR 30690, June 2, 2010] flight level, at 2,000-foot intervals be- ginning at and including flight level 290 § 91.179 IFR cruising altitude or flight (such as flight level 290, 310, 330, 350, level. 370, 390, 410); or Unless otherwise authorized by ATC, (ii) On a magnetic course of 180 de- the following rules apply— grees through 359 degrees, any even (a) In controlled airspace. Each person flight level, at 2000-foot intervals be- operating an aircraft under IFR in ginning at and including flight level 300 level cruising flight in controlled air- (such as 300, 320, 340, 360, 380, 400). space shall maintain the altitude or [Doc. No. 18334, 54 FR 34294, Aug. 18, 1989, as flight level assigned that aircraft by amended by Amdt. 91–276, 68 FR 61321, Oct. ATC. However, if the ATC clearance as- 27, 2003; 68 FR 70133, Dec. 17, 2003; Amdt. 91– signs ‘‘VFR conditions on-top,’’ that 296, 72 FR 31679, June 7, 2007] person shall maintain an altitude or flight level as prescribed by § 91.159. § 91.180 Operations within airspace (b) In uncontrolled airspace. Except designated as Reduced Vertical while in a holding pattern of 2 minutes Separation Minimum airspace. -
Port of Bergen
Cruise Norway The complete natural experience A presentation of Norwegian destinations and cruise ports Cruise Norway Manual 2007/2008 ANGEN R W NNA : GU OTO H Index P Index 2 Presentation of Cruise Norway 2-3 Cruise Cruise Destination Norway 4-5 Norwegian Cruise Ports 6 wonderful Norway Distances in nautical miles 7 The “Norway Cruise Manual” gives a survey of Norwegian harbours Oslo Cruise Port 8 providing excellent services to the cruise market. This presentation is edited in a geographical sequence: It starts in the North - and finishes Drammen 10 in the South. Kristiansand 12 The presentation of each port gives concise information about the most 3 Small City Cruise 14 important attractions, “day” and “halfday” excursions, and useful, practical information about harbour conditions. The amount of information is limited Stavanger 16 due to space. On request, more detailed information may be obtained from Eidfjord 18 Cruise Norway or from the individual ports. The “Norway Cruise Manual” is the only comprehensive overview of Ulvik 20 Norwegian harbours and the cooperating companies that have the Bergen 22 international cruise market as their field of activity. The individual port authorities / companies are responsible for the information which Vik 24 appears in this presentation. Flåm 26 An Early Warning System (EWS) for Norwegian ports was introduced in 2004 Florø 28 - go to: www.cruise-norway.no Olden/Nordfjord 30 T D Geirangerfjord 32 N Y BU Ålesund 34 NANC : Molde/Åndalsnes 36 OTO PH Kristiansund 38 Narvik 40 Møre and Romsdal Lofoten 42 Vesterålen 44 Y WA R NO Harstad 46 ation Tromsø 48 Presenting V INNO Alta 50 . -
NF-2007 Occurrence Reporting in Civil Aviation
NF-2007 Occurrence reporting in civil aviation This form is to be used for reporting occurrences according to Norwegian Aviation Act § 12-10 which implement EU regulation No.376/2014 on the reporting, analysis and follow-up of occurences in civil aviation. Regulation BSL A 1-3 implement EU regulation 2015/1018 laying down a list classifying occurrences in civil aviation to be mandatorily reported. An electronic version of NF-2007 with help-texts and guidance is available on www.altinn.no. The Civil Aviation Authority - Norway (CAA-N) and the Accident Investigation Board Norway (AIBN) highly recommends using the electronic version to anyone who have internet access since this is more secure and simplifies the case handling considerably. Norwegian identity number and/or pin-codes are no longer necessary to report civil aviation occurrences via Altinn. Reports about accidents and serious incidents shall be sent both to the CAA-N and AIBN. Other occurrence reports – i.e. incidents that are not serious – shall only be sent to the CAA-N. The objective of this reporting is to prevent accidents and improve flight safety, not to apportion blame or liability. Sections 0 (entry page), 1.0 (General information) and 9 (Narrative) are mandatory for all reports. In addition, the following sections are applicable to the different reporting groups respectively: - Flight-crew members: 1.1 (accidents and serious incidents only) 2, 3, 4, 7 and 8 - ANS-personell: 3, 4, 5 and 7 - Airport personnel/Ground operations: 2.0, 3, 4, 7 and 8 - Constructors/Manufacturers/Modifiers: 2.0 and 2.4 - Maintenance personnel: 2.0 and 2.4 Enter all information that might be relevant to the occurrence.