Safety Page Transdermal Patches: High Risk for Error?

Total Page:16

File Type:pdf, Size:1020Kb

Safety Page Transdermal Patches: High Risk for Error? Safety Page Transdermal patches: High risk for error? Although transdermal patches that the patches are not being derm, there is potential for confusion, provide a useful alternative to oral applied appropriately. which may result in the patches being medications, patch administration can •Why can’t you tape it on? The technol- applied to the wrong area. be complicated. Transdermal patches ogy of most patches is designed to use Errors have been reported wherein are a common route of administration the occlusive dressing to facilitate the patients receive or apply multiple for hormonal therapy, narcotic analge- absorption of the drug through the patches at once. One man did not sia, and nicotine. There are patches skin. Some patients do not realize that survive after his wife applied six fen- available for over-the-counter and pre- the patch must be applied directly to tanyl patches to his skin at one time. scription-only use. the skin. There was a report of a Another common problem is that the Medication errors with patches patient who applied his new patch old patch is not removed when the occur in every healthcare practice set- directly on top of the old one. This new patch is applied. ting—patients’ homes, physician continued until he had four patches Clear patches have become popular offices, intensive care units, cardiac stuck to one another instead of to his because you cannot see them on the step-down units, day care facilities, skin. In one case, a practitioner skin; however, this feature has also inpatient institutional settings, emer- applied the overlay to the patient’s made them error-prone. Nitroglycerin gency departments, etc. Outcomes skin and taped the medicated patch and nicotine patches are available as have been associated with patient on top of the overlay patch. clear patch formulations. These patch- harm, including death. The highest Additionally, some patients do not es become problematic for practition- risk is with the narcotic analgesic realize they must remove the protec- ers and patients because they are diffi- patches because of the potential for tive liner (usually a plastic/paper lin- cult to find on the patient’s skin when respiratory depression associated ing such as you see on an adhesive it is time to remove or replace them. with this class of medications. bandage) in order to expose the adhe- The risk for errors is increased sive and medication to the skin for when there are multiple caregivers, for Not all patches are equal absorption. One report describes only example, when nurses change shifts Like all medication errors, mistakes partial removal of the backing, where- or if multiple family members take associated with transdermal patches by a patient does not receive the prop- turns helping patients with their med- are multifactorial. One common cause er amount of drug because the protec- ications. This arrangement can result of error seems to be related to the tive lining blocks the absorption. in miscommunication, or lack of com- patch designs, which have confused Many patches have different munication, about where and when patients, caregivers, and practitioners. instructions for where the patch is to the last patch was placed and the next The transdermal patch products be placed. Most patch directions sug- one is due. It is also possible for a available in this country vary in units gest rotating the area of application to patient’s transdermal patch therapy to of dosage-strength expression, fre- avoid skin irritation. For example, go unnoticed by the staff as they tran- quency of administration, shape, size, there are patches that are applied to sition between different levels of care color, and site of administration. the torso or trunk of the body in the healthcare environment. Given all these factors and the com- between the neck and waistline; to plex healthcare environment, oppor- the scrotal tissue; on the skin behind Nomenclature issues tunities for errors abound. the ear or upper arm. Various units of measure are used to In the case of Testoderm patches, express the dosage strength of trans- Application, removal of patches one type is to be applied to the scrotal dermal patches. Some are expressed •What is an overlay? The overlay is tissue, while the other is not. Since as mg/hour, mg/day, mcg/hr, or sim- the portion of the two-piece patch both patches have the name Testo- ply as milligrams. For patches that are that secures the medicated patch to changed weekly, you may see the the skin of the patient. In the institu- By dosage strength expressed as mg/ tional setting, the overlay is some- Marci Lee, Pharm.D., and Jerry day/week. times returned to the pharmacy in Phillips, R.Ph. Another source of confusion is the the patient drawers when the med- use of obscure abbreviations as modi- ication cassettes are exchanged. This fiers. What does TTS mean? TTS can be a clue to the pharmacy staff stands for Transdermal Therapeutic To report a problem with an FDA-regulated product, please call 1-800-FDA-1088. 54 DRUG TOPICS APRIL 1 2002 www.drugtopics.com Safety Page System, and some patches include this dispense all patches to nurses intact, were its own order), as well as the in the name of the product (for exam- with instructions as appropriate. application of each new patch. Docu- ple, Catapres-TTS and Testoderm mentation of patch administration TTS). TTS has been read as an abbrevi- Safe patch storage and disposal should include site of application— ation for Tuesday, Thursday, Saturday, Accidental and intentional ingestion critical if there are multiple caregivers resulting in patch application on three of transdermal patches has been involved in the patient care. days instead of once weekly. reported. Safe storage and disposal of In the inpatient setting, monitor transdermal patches are critical to pre- medication cassettes for return of Dosing intervals for patches venting accidental poisoning of chil- overlay patches to pharmacy, and fol- •When do I change my patch? Patches dren and pets. Some patches come low up on this issue with the practi- are changed daily, every three days, with a container for safe disposal. It tioners caring for that patient to rule twice weekly, weekly, every three may be safer to cut a used patch into out improper patch application. weeks, and so on. Confusion sur- pieces before disposing of it. Monitor patients with two-piece rounding the frequency of patch patches to ensure they are receiving administration presents another Strategies for error prevention active drug. If the therapy seems to be opportunity for error. And it seems When possible, avoid prescribing, ineffective, rule out improper patch that the longer the time between patch purchasing, or adding to the formula- application. changes, the greater the risk for forget- ry any CLEAR patches. Patient education can help prevent ting where the patch was placed or To prevent duplication of therapy in patch-related medication errors. forgetting to remove the old patch. the institutional setting, document the Marci Lee, Pharm.D., is a safety evaluator, and Jerry Phillips, R.Ph., associate director, Division of Medica- patch removal on the patient medica- tion Errors and Technical Support, Office of Drug Appropriate prescribing of patches tion administration record (as if it Safety, Food & Drug Administration. It is possible for prescribers to confuse the dosing interval, dosage strengths, and instructions for use among vari- ous patch formulations. An order for Catapres TTS was written in error as once daily instead of once weekly. Ironically, even after clarification of the dosing interval took place, an error still occurred because the practitioner applied only the overlay patch and not the medicated patch portion. Many products are available in multiple dosage formulations, includ- ing a transdermal patch and oral or injectable forms. There is a potential for error when a patient is being switched from one form to another. Additionally, there is potential for patients to receive duplicate therapy with the same or similar medications. For example, it is possible for a patient to receive a nitroglycerin transdermal patch and oral isosorbide mononi- trate, in error. Pediatric patch issues For the pediatric patient population, only small portions of transdermal patches may be needed. Although some patches can be cut for partial patch administration, cutting others destroys the release of the medication. It is recommended that pharmacists DRUG TOPICS APRIL 1 2002 55.
Recommended publications
  • Formulation and Evaluation of Transdermal Patch and Gel of Nateglinide
    Human Journals Research Article September 2015 Vol.:4, Issue:2 © All rights are reserved by C. Aparna et al. Formulation and Evaluation of Transdermal Patch and Gel of Nateglinide Keywords: Nateglinide, transdermal patch and gel, HPMC, ethyl cellulose, carbopol, PVA, PVP ABSTRACT Anusha Gundeti, C. Aparna*, Dr. Prathima Srinivas The objective of the present work was to formulate Transdermal Drug Delivery systems of Nateglinide, an Department of Pharmaceutics, Sri Venkateshwara antidiabetic drug belonging to meglitinide class with a half life of 1.5 hrs. Transdermal patches containing nateglinide were College of Pharmacy, prepared by solvent casting method using the combinations Affiliated to Osmania University, of HPMC:EC, PVA:PVP, HPMC:Eudragit RS 100, Eudragit RL100:RS100 in different proportions and by incorporating Madhapur, Hyderabad, Telangana -500081, India. different permeation enhancers (polyethylene glycol 400, Su bmission: 7 September 2015 DMSO). The transdermal patches were evaluated for their physicochemical properties like thickness, weight variation, Accepted: 11 September 2015 folding endurance, percentage moisture absorption, percentage Published: 25 September 2015 moisture loss, in-vitro diffusion studies & ex-vivo permeation studies. Transdermal Gel was formulated using HPMC, carbopol 934, carbopol 940 and methyl cellulose. Gels were evaluated for homogeneity, pH, viscosity, drug content, in-vitro diffusion studies & ex-vivo permeation studies. By comparing the drug release F5 (HPMC:EC) formulation was selected as optimized formulation as it could sustain the drug release for 12 hrs i.e. 99.2% when compared to gel. Stability studies were www.ijppr.humanjournals.com carried out according to ICH guidelines and the patches maintained integrity and good physicochemical properties during the study period.
    [Show full text]
  • Transdermal Absorption Preparation
    Europäisches Patentamt *EP001522316A1* (19) European Patent Office Office européen des brevets (11) EP 1 522 316 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 47/34, A61K 47/10, 13.04.2005 Bulletin 2005/15 A61K 47/14, A61K 9/06, A61K 9/08, A61K 9/12, (21) Application number: 03764126.3 A61K 9/70 (22) Date of filing: 02.07.2003 (86) International application number: PCT/JP2003/008400 (87) International publication number: WO 2004/006960 (22.01.2004 Gazette 2004/04) (84) Designated Contracting States: • OMICHI, Katsuhiro AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Saitama-shi, Saitama 338-0832 (JP) HU IE IT LI LU MC NL PT RO SE SI SK TR • OKADA, Minoru Designated Extension States: Inzai-shi, Chiba 270-1323 (JP) AL LT LV MK • KURAZUMI, Toshiaki Narita-shi, Chiba 286-0011 (JP) (30) Priority: 16.07.2002 JP 2002206565 (74) Representative: Hartz, Nikolai F., Dr. (71) Applicant: SSP Co., Ltd. Wächtershäuser & Hartz Chuo-ku, Tokyo 103-8481 (JP) Patentanwälte Weinstrasse 8 (72) Inventors: 80333 München (DE) • NARUI, Takashi Sakura-shi, Chiba 285-0817 (JP) (54) TRANSDERMAL ABSORPTION PREPARATION (57) A transdermal absorption promotion composi- and transdermal absorption preparation not only exhibit tion comprising the following components (a), (b), and an excellent transdermal absorption promotion effect, (c) and a transdermal absorption preparation compris- but also exhibit superior skin-permeability, even if a drug ing the following components (a), (b), (c), and (d) are having a relatively high lipophilic property and poor disclosed.
    [Show full text]
  • TOXICOLOGY and EXPOSURE GUIDELINES ______(For Assistance, Please Contact EHS at (402) 472-4925, Or Visit Our Web Site At
    (Revised 1/03) TOXICOLOGY AND EXPOSURE GUIDELINES ______________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." This early observation concerning the toxicity of chemicals was made by Paracelsus (1493- 1541). The classic connotation of toxicology was "the science of poisons." Since that time, the science has expanded to encompass several disciplines. Toxicology is the study of the interaction between chemical agents and biological systems. While the subject of toxicology is quite complex, it is necessary to understand the basic concepts in order to make logical decisions concerning the protection of personnel from toxic injuries. Toxicity can be defined as the relative ability of a substance to cause adverse effects in living organisms. This "relative ability is dependent upon several conditions. As Paracelsus suggests, the quantity or the dose of the substance determines whether the effects of the chemical are toxic, nontoxic or beneficial. In addition to dose, other factors may also influence the toxicity of the compound such as the route of entry, duration and frequency of exposure, variations between different species (interspecies) and variations among members of the same species (intraspecies). To apply these principles to hazardous materials response, the routes by which chemicals enter the human body will be considered first. Knowledge of these routes will support the selection of personal protective equipment and the development of safety plans. The second section deals with dose-response relationships.
    [Show full text]
  • An Archetype Swing in Transdermal Drug Delivery
    Indo American Journal of Pharmaceutical Research, 2017 ISSN NO: 2231-6876 A COMPREHENSIVE REVIEW ON MICRONEEDLES - AN ARCHETYPE SWING IN TRANSDERMAL DRUG DELIVERY G. Ravi*, N. Vishal Gupta, M. P. Gowrav Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Shri Shivarathreeshwara Nagara, Mysuru, Karnataka, India. ARTICLE INFO ABSTRACT Article history Transdermal drug delivery is the non-invasive delivery of medications through the skin Received 23/12/2016 surface into the systemic circulation. The advantage of transdermal drug delivery system is Available online that it is painless technique of administration of drugs. The advantage of transdermal drug 31/01/2017 delivery system is that it is painless technique of administration of drugs. Transdermal drug delivery system can improve the therapeutic efficacy and safety of the drugs because drug Keywords delivered through the skin at a predetermined and controlled rate. Due to the various Microneedles, biomedical benefits, it has attracted many researches. The barrier nature of stratumcorneum Hypodermic Needles, poses a danger to the drug delivery. By using microneedles, a pathway into the human body Transdermal, can be recognized which allow transportation of macromolecular drugs such as insulin or Stratumcorneum, vaccine. These microneedles only penetrate outer layers of the skin, exterior sufficient not to Patch. reach the nerve receptors of the deeper skin. Thus the microneedles supplement is supposed painless and reduces the infection and injuries. Researches from the past few years showed that microneedles have emerged as a novel carrier and considered to be effective for safe and improved delivery of the different drugs. Microneedles development is created a new pathway in the drug delivery field.
    [Show full text]
  • The Role of Deformable Liposome Characteristics on Skin Permeability of Meloxicam: Optimal Transfersome As Transdermal Delivery Carriers
    Send Orders for Reprints to [email protected] The Open Conference Proceedings Journal, 2013, 4, 87-92 87 Open Access The Role of Deformable Liposome Characteristics on Skin Permeability of Meloxicam: Optimal Transfersome as Transdermal Delivery Carriers Sureewan Duangjit1,2, Praneet Opanasopit1, Theerasak Rojarata1, Yasuko Obata2, Yoshinori Oniki2, Kozo Takayama2 and Tanasait Ngawhirunpat1,* 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand 2Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan Abstract: The role of deformable liposomes characteristics on skin permeability has evoked considerable interest, since the articles reporting the effectiveness of transfersomes for skin delivery were increasingly published. Several reports focus on the effect of formulation factor which directly affected the transfersome’s skin permeability. However, the effect of formulation factors was not fully understood as the contradictory results. To clarify this problem, the reliable statistical techniques, excellent experimental design and systematical variation were used in this study. Transfersomes loaded meloxicam containing controlled amount of phosphatidylcholine (PC), cholesterol (Chol), type of surfactant (hydrophilic part, lipophilic part ) were prepared and investigated for the physicochemical characteristics (e.g., size, size distribution, charge, elasticity, drug content, morphology) and skin permeability. The results indicated
    [Show full text]
  • Biopharmaceutical Properties of Patches Relevant for Transdermal Drug Absorption – Confounding Factors and In‐Vitro Testing
    Biopharmaceutical Properties of Patches 16.06.2015 Relevant for Transdermal Drug Absorption Biopharmaceutical Properties of Patches Relevant for Transdermal Drug Absorption – Confounding Factors and In‐Vitro Testing Johannes Bartholomäus Pharmakreativ Consulting, Aachen Skin as Barrier to Transdermal Absorption And that’s from what Mother Nature did not design all the difficulties in transdermal drug skin as an absorption site. delivery arise. It‘s much more the opposite! Stratum corneum as lipophilic barrier June 16, 2015 J. Bartholomäus: Biopharmaceutical Properties of Patches 2 © Johannes Bartholomäus 1 Biopharmaceutical Properties of Patches 16.06.2015 Relevant for Transdermal Drug Absorption Definition TDDS by Guidelines . Transdermal drug delivery systems . Transdermal patch:** Flexible single‐ (TDDS):* A TDDS or transdermal dose preparation intended to be patch is a flexible pharmaceutical applied to the unbroken skin to preparation of varying size containing obtain a systemic delivery over an one or more active substance(s) to be extended period of time. applied on the intact skin for systemic . Transdermal patches consist of a availability. backing sheet supporting a reservoir . There are two main types of or a matrix containing the active transdermal patch systems substance(s) and on the top a depending on how the drug pressure‐sensitive adhesive, which substance is dispersed in other patch assures the adhesion of the components: preparation to the skin. – Matrix systems with drug release based on . The backing sheet is impermeable to the diffusion of drug substance. the active substance(s) and normally – Reservoir systems containing a specific liquid drug compartment and release is impermeable to water. controlled by a membrane.
    [Show full text]
  • Pulmonary Delivery of Biological Drugs
    pharmaceutics Review Pulmonary Delivery of Biological Drugs Wanling Liang 1,*, Harry W. Pan 1 , Driton Vllasaliu 2 and Jenny K. W. Lam 1 1 Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; [email protected] (H.W.P.); [email protected] (J.K.W.L.) 2 School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK; [email protected] * Correspondence: [email protected]; Tel.: +852-3917-9024 Received: 15 September 2020; Accepted: 20 October 2020; Published: 26 October 2020 Abstract: In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery.
    [Show full text]
  • Transdermal Nicotine Maintenance Attenuates the Subjective And
    Neuropsychopharmacology (2004) 29, 991–1003 & 2004 Nature Publishing Group All rights reserved 0893-133X/04 $25.00 www.neuropsychopharmacology.org Transdermal Nicotine Maintenance Attenuates the Subjective and Reinforcing Effects of Intravenous Nicotine, but not Cocaine or Caffeine, in Cigarette-Smoking Stimulant Abusers 1 1 ,1,2 Bai-Fang X Sobel , Stacey C Sigmon and Roland R Griffiths* 1Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA The effects of transdermal nicotine maintenance on the subjective, reinforcing, and cardiovascular effects of intravenously administered cocaine, caffeine, and nicotine were examined using double-blind procedures in nine volunteers with histories of using tobacco, caffeine, and cocaine. Each participant was exposed to two chronic drug maintenance phases (21 mg/day nicotine transdermal patch and placebo transdermal patch). Within each drug phase, the participant received intravenous injections of placebo, cocaine (15 and 30 mg/70 kg), caffeine (200 and 400 mg/70 kg), and nicotine (1.0 and 2.0 mg/70 kg) in mixed order across days. Subjective and cardiovascular data were collected before and repeatedly after drug or placebo injection. Reinforcing effects were also assessed after each injection with a Drug vs Money Multiple-Choice Form. Intravenous cocaine produced robust dose-related increases in subjective and reinforcing effects; these effects were not altered by nicotine maintenance. Intravenous caffeine produced elevations on several subjective ratings; nicotine maintenance did not affect these ratings. Under the placebo maintenance condition, intravenous nicotine produced robust dose-related subjective effects, with maximal increases similar to the high dose of cocaine; nicotine maintenance significantly decreased the subjective and reinforcing effects of intravenous nicotine.
    [Show full text]
  • A Brief Review on Transdermal Patches
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Review Article Organic & Medicinal Chem IJ Volume 7 Issue 2 - June 2018 Copyright © All rights are reserved by Nidhi Sharma DOI: 10.19080/OMCIJ.2018.07.555707 A Brief Review on Transdermal Patches Nidhi Sharma* HIMT College of Pharmacy, Greater Noida, India Submission: May 12, 2018; Published: June 05, 2018 *Corresponding author: Nidhi Sharma, HIMT College of Pharmacy, Greater Noida, India, Email: Abstract healingTransdermal to an injured drug area delivery of the system body. was An presentedadvantage toof overcome a transdermal the difficulties drug delivery of drug route delivery over especiallyother types oral of route. delivery A transdermal system such patch as oral, is a topical,medicated i.v., adhesive i.m., etc. ispatch that that the patchis placed provides on the askin controlled to deliver release a specific of the dose medication of medication into the through patient, the usually skin and through into the either bloodstream. a porous It membrane promotes covering a reservoir of medication or through body heat melting thin layers of medication embedded in the adhesive. The main disadvantage to transdermal delivery systems stems from the fact that the skin is a very effective barrier, as a result, only medications whose molecules are small can easily penetrate the skin, so it can be delivered by this method. This review article describes the overall introduction of transdermal patches including type of transdermal patches, method of preparation of transdermal
    [Show full text]
  • Transdermal Opioid Patches: Quick Reference Guide
    Transdermal Opioid Patches: Quick Reference Guide Important Information Transdermal opioid patches have been associated with medication errors. Incorrect use of opioid patches can result in significant patient harm, including death. There is a SLOW ONSET and SLOW OFFSET of analgesia and there is a SLOW ONSET and SLOW OFF- SET of side-effects. Transdermal opioid patches are NOT appropriate for acute pain. The strength of the patch is prescribed in micrograms/hour. If in DOUBT seek advice. The types of transdermal patches available: Opioid Brands and Strengths (micrograms/hr) available Frequency of Administration Butrans® 5, 10, 15, 20 7 days Buprenorphine Transtec® 35, 52.5, 70 96 hours Durogesic DTrans® 12, 25, 50, 75, 100 3 days Fentanyl* Matrifen® 12, 25, 50, 75,100 3 days Fentadur® 12, 25, 50, 75, 100 3 days * Please note other brands of fentanyl transdermal patches may be available. This list is not exhaustive. Table 1: Dose Equivalence Table (Please see notes below). Oral Morphine Equivalent Fentanyl Buprenorphine (over 24 hours.) 10mg 5 micrograms/hour 20mg - 10 micrograms/hour 30mg 12 micrograms/hour - 40mg - 20 micrograms/hour 60mg 25 micrograms/hour 70mg - 35 micrograms/hour 120mg 50 micrograms/hour 52.5 micrograms/hour 150mg - 70 micrograms/hour 180mg 75 micrograms/hour - 240mg 100 micrograms/hour - There are differences in the literature regarding opioid conversion ratios. The conversion ratios listed above are the conversion ratios commonly used in practice at Our Lady’s Hospice and Care Service (OLH&CS). Please see OLH&CS Opioid Conversion Chart available from the Palliative Meds Info webpages on www.olh.ie.
    [Show full text]
  • Aptensio XR (Methylphenidate) Extended-Release Capsules
    Aptensio XR™ (methylphenidate) – First-time authorized brand alternative • On May 5, 2020, Rhodes Pharmaceuticals launched an authorized brand alternative of its (Rhodes) branded Aptensio XR (methylphenidate) extended-release capsules. • Aptensio XR is approved for the treatment of attention deficit hyperactivity disorder (ADHD) in patients 6 years and older. • Methylphenidate is also available generically as an oral solution, extended-release capsule, extended-release tablet, tablet, and chewable tablet. It is also available as a brand extended-release capsule (Adhansia XR™, Jornay PM™), extended-release orally disintegrating tablet (Contempla-XR ODT™), transdermal patch (Daytrana®), extended-release chewable tablet (QuilliChew XR®), extended-release oral suspension (Quillivant XR®), and extended-release tablet (Relexxii™). — Methylphenidate oral solution, tablet, chewable tablet and extended-release tablets are approved to treat ADHD and narcolepsy. — Methylphenidate extended-release capsules, Adhansia XR, Contempla-XR ODT, Daytrana, Jornay PM, QuilliChew XR, Quillivant XR and Relexxii are approved to treat ADHD. • Aptensio XR carries a boxed warning for abuse and dependence. optumrx.com OptumRx® specializes in the delivery, clinical management and affordability of prescription medications and consumer health products. We are an Optum® company — a leading provider of integrated health services. Learn more at optum.com. All Optum® trademarks and logos are owned by Optum, Inc. All other brand or product names are trademarks or registered marks of their respective owners. This document contains information that is considered proprietary to OptumRx and should not be reproduced without the express written consent of OptumRx. RxNews® is published by the OptumRx Clinical Services Department. ©2020 Optum, Inc. All rights reserved. .
    [Show full text]
  • Transdermal and Transbuccal Drug Delivery
    TRANSDERMAL AND TRANSBUCCAL DRUG DELIVERY: ENHANCMENT USING IONTOPHORESIS AND CHEMICAL ENHANCERS by LONSHENG HU A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Pharmaceutical Science written under the direction of Bozena Michniak-Kohn and approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2010 ABSTRACT OF THE DISSERTATION TRANSDERMAL AND TRANSBUCCAL DRUG DELIVERY: ENHANCMENT USING IONTOPHORESIS AND CHEMICAL ENHANCERS By LONSHENG HU Dissertation Director: Professor Bozena Michniak-Kohn Transdermal and transbuccal routes offer attractive alternatives for systemic delivery of drugs due to their distinct advantages: non-invasive, avoidance of first-pass effect, improved bioavailability and reduction of systemic side effects. However, only a few drugs have been successfully delivered into blood stream to reach therapeutic levels without causing notable skin irritation or damage. Transbuccal drug delivery systems are still at research stage. The major barriers to transdermal and transbuccal drug delivery are stratum corneum of skin and epithelium of buccal tissue. The objective of this work was to overcome these barriers to significantly enhance transdermal and transbuccal delivery of hydrophilic drugs without causing major damage to skin and buccal tissue. In this work, iontophoresis, chemical
    [Show full text]