Full Issue, Vol. 57 No. 2

Total Page:16

File Type:pdf, Size:1020Kb

Full Issue, Vol. 57 No. 2 Great Basin Naturalist Volume 57 Number 2 Article 14 5-7-1997 Full Issue, Vol. 57 No. 2 Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation (1997) "Full Issue, Vol. 57 No. 2," Great Basin Naturalist: Vol. 57 : No. 2 , Article 14. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss2/14 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. T H E GREATG R E A T BASINBAS I1 naturalistnaturalist A VOLUME 57 NQ 2 APRIL 1997 br16hamBRIGHAM YOUNG university GREAT BASIN naturalist editor assistant editor RICHARD W BAUMANN NATHAN M SMITH 290 MLBM 190 MLBM PO box 20200 PO box 26879 brigham young university brigham young university provo UT 84602020084602 0200 provo UT 84602687984602 6879 801378soisol8013785053801 378 5053 8013786688801 378 6688 FAX 8013783733801 378 3733 emailE mail nmshbll1byuedu associate editors J R CALLAHAN PAUL C MARSH museum of southwestern biology university of center for environmental studies arizona new mexico albuquerque NM state university tempe AZ 85287 mailing address box 3140 hemet CA 92546 STANLEY D SMITH BRUCE D ESHELMAN department of biology department of biological sciences university of university of nevada las vegas wisconsin whitewater whitewater wlWI 53190 las vegas NV 89154400489154 4004 JEFFREY J JOHANSEN PAUL T TUELLER department of biology john carroll university department of environmental resource sciences university heights OH 44118 university of nevada reno 1000 valley road reno NV 89512 BORIS C kondratieff department of entomology colorado state ROBERT C WHITMORE university fort collins CO 80523 division of forestry box 6125 west virginia university Morganmorgantowntown WV 26506612526506 6125 editorial board berranjerran T flinders chairman botany and range science duke S rogers zoology wilford M hess botany and range science richard R tolman zoology all are at brigham young university ex officio editorial board members include steven L taylor college of biology and agriculture H duane smith director monte L bean life science museum richard W baumann editor great basin naturalist the great basin naturalist founded in 1939 is published quarterly by brigham young university unpublished manuscripts that further our biological understanding of the great basin and surrounding areas in western north america are accepted for publication subscriptions annual subscriptions to the great basin naturalist for 1997 are 25 for individual sub- scriscribersbers 30 outside the united states and 50 for institutions the price of single issues is 12 all back issues are in print and available for sale all matters pertaining to subscriptions back issues or other busi- ness should be directed to the editor great basin naturalist 290 MLBM PO box 20200 brigham young university provo UT 84602020084602 0200 scholarly exchanges libraries or other organizations interested in obtaining the great basin naturalist through a continuing exchange of scholarly publications should contact the exchange librarian 6385 HBLL PO box 26889 brigham young university provo UT 84602688984602 6889 editorial production staff joanne abel technical editor copyright 0 1997 by Brigbrighamhain young university ISSN 001736140017 3614 official publication date 7 may 1997 5975 97 750 22025 the great basin naturalist PUBLISHED AT PROVO UTAH BY BRIGHAM YOUNG university ISSN 001736140017 3614 VOLUME 57 30 APRIL 1997 no 2 great basin naturalist 572 019971997 appp 93 103 freshwater SPONGES PORIFERA spongillidae OF WESTERN MONTANA susan H bartoni and john S addis2addiseaddisl2 ABSTRACT between may 1992 and april 1996 freshwater sponges fonporiferaPonferahera spongillidae were collected at 24 sites distributed among 6 sub major drainage basins in western montana to determine the species present water samples also were analyzed from 16 of these sites and from 9 sites at which no sponges were detected to characterize sponge habitats chemically thieethree species of sponges were identified ephydatia muellerimuellen em eunapiusfragiliseunapiusEunaeunepiusprus frafragilisfragulispragilis Eef and spongilla lacus tris sl A ath4th type of specimen was present at 2 sites but could not be identified because of the absence ofgemoulesgemmulesofgemmulesgemmules and gemmoscleres at 46 of the sites containing sponges more than I1 specimen type was present sponges were most com- monly found near outlets of lakes attached to sides or undersides of submerged rocks and logs they appeared as encrusting em ef sl lobate em and fingerlike sl growths varying in color from light tan to green dimensions of the spispiculesspicklescules varied greatly within each species and expanded previously recorded ranges no factors limiting sponge dis- tributiontribution were identified but ranges of conductivity em and of silica em sl calcium em and magnesium em con- centrationscentrations were expanded beyond those reported previously key words freshwater sponges bonPonporiferaferapera spongillidae ephydatiaepbydatia muellenmuelleri eunapiusEunapius frafragilisfragulisgilis spongilla laculacustnslacustrisstris montana although freshwater sponges form part of 1932 jewell 193519391935 1939 poirrier 1969 harrison the benthic community in many of the world s 1974 in addition some attempts have been lentic and lotic habitats they are among the made to identify factors that affect species dis- least understood of animal groups basic ques- tributiontribution old 1932 jewell 1935 1939 poirrier tions about their biogeography and ecology 1969 strekal and mcdiffett 1974 freshwater remain unanswered frost 1991 their distri- sponges of the west in contrast have received butions have not been completely determined much less attention this is unfortunate since and their habitat requirements have not been water quality is an important issue in the west- fully defined ern united states and since sponges are poten- freshwater sponges in the united states tially valuable indicatorsbioindicatorsbio of water quality have been studied most extensively in the east harrison 1974 francis and harrison 1988 and midwest species present in these regions richelle maurer et al 1994 have been described and their habitats charac- in the mountain west only freshwater terized in chemical and physical terms old sponges of colorado have been studied in department of biology carroll college helena MT 59625 author to whom correspondence should be addressed 93 94 GREAT BASIN naturalist volume 57 detail williams 1977 1980 freshwater sponges tanes upper daridarkoarkclariciariclark fork lower clark fork have been collected in montana see for ex- kootenai and flathead water quality bureau ample young 1935 poirrier et Aal 1987 but no 1991 sites included lakes and ponds man studies focusing on the freshwater sponges of made as well as natural and in some cases the this state have been published in this paper first 50 m of rivers or streams draining lakes and we report results of a survey of freshwater ponds most sites were within 2 km of a road sponges in western montana the survey was in most cases we collected samples by wad- conducted to identify the species present and to ing near the shore and handhandpickingpicking likely determine chemical and physical ranges for substratasubstratalsubstrata submerged rocks or logs most each species habitat the latter is a necessary samples were obtained from substratasubstratalsubstrata sub- step in defining factors that influence sponge merged at depths of less than 1 m in I1 lake distribution blanchard lake samples were collected by diving substratum depth min this case was MATERIALS AND METHODS approximately 3 m we attempted to collect gemoulesgemgemmulesmules asexual propagules with the sampling sam- ples by scraping the substratum with a knife between may 1992 and april 1996 we ob- or gathering a piece of the substratum itself tained sponge samples from 24 sites in western for transport to the laboratory samples were montana listed in table 1 these sites were placed inm small containers with lake water distributed among 6 sub major drainage basins between june and august 1994 surface missouri sun smith upper missouri tribu water grab samples were taken from 16 sites at tableTABLL 1 surveyed lakes in westeinwestern montana containing freshwater sponges species lake county locality present MISSOURI SUN SMIIIISMITH BASIN holter lake lewis and clarkglaik 49o59n149059n112000w12o00w 13 upper holteiholterholtelholtey lake lewis and clark 4650n11200w46050n112000w 1 UPPERUPPLR MISSOURI tributariesTRIBUTATRIBU parlesPARIESrlesRIES BASIN lowellower mineiminer lake beaverhead 4520n1i3o34w45020n113034w 13 rockroekbockboek island lake beaverhead 45018n113041w45118n113141w 23 upper mineiminelminer lake beaverhead 4516n11341w45016n113041w 2 hebgen lake madison 44052n1120w44152n1 I1 i20w 13 jerome rock lake madison 4523ni45023n1128w4523 NI I1 i28w 2 pond below blue paradise lake madison 4457n144057n1126wI1 i26w 2 quake lake madison 4450ni445044050n111026wNI I1 126w 23 willow creek reservoirreser volivoir madison 4543nmo42w4543n11142w 1 UPPER CLARK FORK BASIN blanchard lake missoula 47101n147001n113023w1323w 234 salmon lake missoula 4706n11324w47006n113024w 123 coopers lake powell 47005n112055w47105n112155w 34 pond nealnear west forifoifolforkk of bittelbitterrooti oot river
Recommended publications
  • Freshwater Sponges (Porifera: Spongillida) of Tennessee
    Freshwater Sponges (Porifera: Spongillida) of Tennessee Authors: John Copeland, Stan Kunigelis, Jesse Tussing, Tucker Jett, and Chase Rich Source: The American Midland Naturalist, 181(2) : 310-326 Published By: University of Notre Dame URL: https://doi.org/10.1674/0003-0031-181.2.310 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-American-Midland-Naturalist on 18 Sep 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by United States Fish & Wildlife Service National Conservation Training Center Am. Midl. Nat. (2019) 181:310–326 Notes and Discussion Piece Freshwater Sponges (Porifera: Spongillida) of Tennessee ABSTRACT.—Freshwater sponges (Porifera: Spongillida) are an understudied fauna. Many U.S. state and federal conservation agencies lack fundamental information such as species lists and distribution data. Such information is necessary for management of aquatic resources and maintaining biotic diversity.
    [Show full text]
  • Freshwater Sponge Hosts and Their Green Algae Symbionts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Freshwater sponge hosts and their green algae 2 symbionts: a tractable model to understand intracellular 3 symbiosis 4 5 Chelsea Hall2,3, Sara Camilli3,4, Henry Dwaah2, Benjamin Kornegay2, Christine A. Lacy2, 6 Malcolm S. Hill1,2§, April L. Hill1,2§ 7 8 1Department of Biology, Bates College, Lewiston ME, USA 9 2Department of Biology, University of Richmond, Richmond VA, USA 10 3University of Virginia, Charlottesville, VA, USA 11 4Princeton University, Princeton, NJ, USA 12 13 §Present address: Department of Biology, Bates College, Lewiston ME USA 14 Corresponding author: 15 April L. Hill 16 44 Campus Ave, Lewiston, ME 04240, USA 17 Email address: [email protected] 18 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 In many freshwater habitats, green algae form intracellular symbioses with a variety of 29 heterotrophic host taxa including several species of freshwater sponge. These sponges perform 30 important ecological roles in their habitats, and the poriferan:green algae partnerships offers 31 unique opportunities to study the evolutionary origins and ecological persistence of 32 endosymbioses.
    [Show full text]
  • Climacia Californica Chandler, 1953 (Neuroptera: Sisyridae) in Utah: Taxonomic Identity, Host Association and Seasonal Occurrence
    AQUATIC INSECTS 2019, VOL. 40, NO. 4, 317–327 https://doi.org/10.1080/01650424.2019.1652329 Climacia californica Chandler, 1953 (Neuroptera: Sisyridae) in Utah: taxonomic identity, host association and seasonal occurrence Makani L. Fishera, Robert C. Mowerb and C. Riley Nelsona aDepartment of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA; bUtah County Mosquito Abatement, Spanish Fork, UT, USA ABSTRACT ARTICLE HISTORY We provide a record of spongillaflies (Sisyridae) with an associated Received 30 December 2018 host sponge from a population found in Spring Creek, Utah. We Accepted 15 May 2019 monitored the population for the 2016 field season to identify the First published online insect and its associated host sponge and to establish the sea- 30 September 2019 ’ sonal period of the insect s presence in the adult stage. We also KEYWORDS evaluated the commonly used sampling techniques of sweeping Aquatic Neuroptera; and light trapping and made natural history observations. We Sisyridae; freshwater identified the spongillaflies as Climacia californica Chandler, 1953 sponge; Utah; and the sponge to be Ephydatia fluviatilis (Linnaeus, 1758). We col- Intermountain West lected 1726 adults, and light trapping proved to be the superior collecting method. The population was characterised by a two- week emergence peak occurring at the end of July to beginning of August followed by a steep decline. Other habitats within the state contained E. fluviatilis and should be sampled using light traps at times when peak abundances are predicted to further understand the distribution of C. californica across the state and the Intermountain West. urn:lsid:zoobank.org:pub:F795281F-0042-4F5F-B15B-F6C584FACF2B Introduction Sisyridae, or spongillaflies, and freshwater sponges (Porifera: Spongillidae) are linked together in a parasite–host association (Parfin and Gurney 1956; Steffan 1967; Resh 1976; Pupedis 1980).
    [Show full text]
  • Spiculous Skeleton Formation in the Freshwater Sponge Ephydatia fluviatilis Under Hypergravity Conditions
    Spiculous skeleton formation in the freshwater sponge Ephydatia fluviatilis under hypergravity conditions Martijn C. Bart1, Sebastiaan J. de Vet2,3, Didier M. de Bakker4, Brittany E. Alexander1, Dick van Oevelen5, E. Emiel van Loon6, Jack J.W.A. van Loon7 and Jasper M. de Goeij1 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands 2 Earth Surface Science, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands 3 Taxonomy & Systematics, Naturalis Biodiversity Center, Leiden, The Netherlands 4 Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research & Utrecht University, Utrecht, The Netherlands 5 Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research & Utrecht University, Utrecht, The Netherlands 6 Department of Computational Geo-Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands 7 Dutch Experiment Support Center, Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA) & European Space Agency Technology Center (ESA-ESTEC), TEC-MMG LIS Lab, Noordwijk, Amsterdam, The Netherlands ABSTRACT Successful dispersal of freshwater sponges depends on the formation of dormant sponge bodies (gemmules) under adverse conditions. Gemmule formation allows the sponge to overcome critical environmental conditions, for example, desiccation or freezing, and to re-establish as a fully developed sponge when conditions are more favorable. A key process in sponge development from hatched gemmules is the construction of the silica skeleton. Silica spicules form the structural support for the three-dimensional filtration system the sponge uses to filter food particles from Submitted 30 August 2018 ambient water.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution. Michael Anthony Poirrier Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Poirrier, Michael Anthony, "Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution." (1969). LSU Historical Dissertations and Theses. 1683. https://digitalcommons.lsu.edu/gradschool_disstheses/1683 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9083 POIRMER, Michael Anthony, 1942- LOUISIANA FRESH-WATER SPONGES: TAXONOMY, ECOLOGY AND DISTRIBUTION. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been microfilmed exactly as received 70-9083 POIRRIER, Michael Anthony, 1942- LOUXSIANA FRESH-WATER SPONGES: TAXONOMY, ECOLOGY AND DISTRIBUTION. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms,
    [Show full text]
  • Download Article (PDF)
    OCCASlONAL PAPER N'O. 138 z ------I e _........... g 0 D 0 I I RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA OCCASIONAL PAPER No. 138 FRESHWATER SPONGES OF INDIA By T·D.SOOTA Bdited by the Director, Zoological SurtJey of Indi~ 1991 © Copyright 1991, Government of India Published in June, 1991 PRICE: Inlaod : Rs_ 65-00 Foreign: £ 4-00 $ 10'00 PRINTBD IN INDIA BY THE BANI PRESS, 16, HBMBNDRA SBN STREET, CALCUTTA-700 006, PUBLISHBD BY THB DIRECTOR, AND PRODUCED BY THE PUBLICATION DMSION ZOOLOGICAL SURVEY OF INDIA, CALCU'rfA.-700 072 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA MISCELLANEOUS PUBLICATION Occasional Paper No. 138 1991 Pages 1-116 CONTENTS PAGE I. 1ntroauction 1 II. A Brief Hi8tory ... 5 III. General Account ... 8 (i) General structure ... 8 (ii) Colouration ... 9 (iii) Nutrition ... 10 (iv) Respiration 10 (v) Circulation 11 (vi) Excretion 11 (vii) Cell behaviour in aggregation 11 (viii) Reproduction 12 (iv) Symbiosis ... 12 (x) Commensalism ••• 13 (xi) Water pollution ... 13 (xii) Temperature ••• 14 IV. Oollection and, Pre8ervation ... 15 V. Identification 16 VI. Ourrent sY8tematics Problem8 19 VII. Systematic Account ••• 20 Phylum Porifera Grant, 1872 20 Class Demospongiae Sollas, 1875 20 Order Haplosclerida Topsent, 1898 ••• 20 .. l 11 ] PA~B Family Spongillidae Gray, 1867 ••• 20 Key to genera ... 21 Genus I. SpongiZZa Lamarck, 1816 ••• 22 Key to species ••• 24 1. SpongiZla alba Carter, 1849 ... 25 2. S. lacU8tris (Linnaeus, 1758) • •• 27 Genus II. Eunapiu8 Gray, 1867 ... 30 Key to species ... 32 3. Eunapius oolcuttanu8 (Annandale, 1911) ... 32 4. E. ca·rteri (Bowerbank, 1863) • •• 34 5. E. cra8sissimu8 (Annandale, 1907) 36 6.
    [Show full text]
  • Porifera: Spongillidae) © 2020 JEZS Received: 15-06-2020 in the Canal of Sundarbans Eco-Region, India Accepted: 14-08-2020
    Journal of Entomology and Zoology Studies 2020; 8(5): 36-39 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Occurrence of freshwater sponge Ephydatia www.entomoljournal.com JEZS 2020; 8(5): 36-39 fluviatilis Linnaeus, 1759 (Porifera: Spongillidae) © 2020 JEZS Received: 15-06-2020 in the canal of Sundarbans eco-region, India Accepted: 14-08-2020 Tasso Tayung Scientist, ICAR-Central Inland Tasso Tayung, Pranab Gogoi, Mitesh H Ramteke, Dr. Archana Sinha, Dr. Fisheries Research Institute, Aparna Roy, Arunava Mitra and Dr. Basanta Kumar Das Barrackpore, Kolkata, West Bengal, India Abstract Pranab Gogoi A field survey was carried out to the Bishalakhi canal (21°46'49.2"N 88°05'27.7"E) located in Sagar Scientist, ICAR-Central Inland Island, Indian Sundarbans eco-region. The canal is a tide fed canal subjected to the brackish water Fisheries Research Institute, influence as it is connected to the Hooghly River. A mass of freshwater sponge was found growing on Barrackpore, Kolkata, West submerged nylon net screen and bamboo poles structure, these structure were constructed for fish culture Bengal, India in the canal. Sponge specimens were carefully scraped out using a clean flat blade with the help of 'scalpel' and preserved it in 70% ethanol. Sponge samples were undergone an acid digestion process to Mitesh H Ramteke obtain clean spicules. The spicules sample were examined under a compound light microscope for Scientist, ICAR-Central Inland species-level identification. The sponge specimen was identified as Ephydatia fluviatilis Linnaeus, 1759 Fisheries Research Institute, Barrackpore, Kolkata, West based on gemmule spicule morphology. The present study is the first report on the occurrence of E.
    [Show full text]
  • Understanding Animal Evolution: the Added Value of Sponge Transcriptomics and Genomics the Disconnect Between Gene Content and Body Plan Evolution
    PROBLEMS AND PARADIGMS Prospects & Overviews www.bioessays-journal.com Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics The disconnect between gene content and body plan evolution Emmanuelle Renard,* Sally P. Leys, Gert Wörheide, and Carole Borchiellini 1. Introduction Sponges are important but often-neglected organisms. The absence of Bilaterians represent the majority of extant classical animal traits (nerves, digestive tract, and muscles) makes sponges animal species and unsurprisingly are challenging for non-specialists to work with and has delayed getting high highly represented with fully sequenced quality genomic data compared to other invertebrates. Yet analyses of sponge genomes. There is particular interest, genomes and transcriptomes currently available have radically changed our however, in studying non-bilaterian taxa understanding of animal evolution. Sponges are of prime evolutionary (Placozoa, Cnidaria, Ctenophora, and Por- importance as one of the best candidates to form the sister group of all other ifera) because they hold the key to understanding the origin of major tran- animals, and genomic data are essential to understand the mechanisms that sitions in animal body plans.[1,2] Sequenc- control animal evolution and diversity. Here we review the most significant ing and analyzing the genomes of non- outcomes of current genomic and transcriptomic analyses of sponges, and bilaterians will help determine the origins discuss limitations and future directions of sponge transcriptomic and of major features of Bilaterians such as genomic studies. axial polarity, symmetry, nervous systems, muscles, and even the origin of germ layers and the gut. Many fewer genomes are available for non-bilaterians, but one of the most poorly represented phyla is also one of the earliest branching of animals, and one with widespread ecological and evolutionary importance: Porifera (sponges).
    [Show full text]
  • Stimulatory Activity of Four Green Freshwater Sponges on Aquatic Mycotal Communities
    Vol. 14(45), pp. 3093-3100, 11 November, 2015 DOI: 10.5897/AJB2015.14738 Article Number: 10.5897/AJB2015.14738 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Stimulatory activity of four green freshwater sponges on aquatic mycotal communities Bazyli Czeczuga*, Ewa Czeczuga- Semeniuk, Adrianna Semeniuk- Grell and Janusz Semeniuk Department of General Biology, Medical University, Mickiewicza 2C, 15-222 Białystok, Poland. Received 16 May, 2015; Accepted 22 October, 2015 The influence of the four species of green sponges (Ephydatia muelleri, Heteromeyenia stepanowii, Spongilla fluviatilis, and Spongilla lacustris) on the occurrence of aquatic mycotal species in the water of three four water bodies of different trophy was investigated in this study. Seeds and snake exuviae were used as baits. For the measurement of the primary and extracellular production by symbiotic algae of green sponges and assimilation of those products by mycota, radioactive carbon (14C) was used. A total of 75 mycotal species were found to be growing on the baits. The fewest mycota were noted in the containers in water from oligotrophic Lake Hańcza; the most in the containers with eutrophic water from River Supraśl. More mycota were found to grow in the containers with green sponges (Sp) than in the controls (Co) in water from all water bodies. The mean ratio of Sp/Co in green sponges ranged from 2.30 (E. muelleri) to 4.80 (H. stepanowii); in brown colonies (without symbiotic algae) it was 0.90. Mean value of 14C fixation (primary production) in symbiotic algae of Spogilla fluviatilis was 5.67 mg C g-1 dry weight sponge per hour.
    [Show full text]
  • Isolating the Targets of Six Transcription Factor in Ephydatia Muelleri and Identifying the Role Of
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 2017 ISOLATING THE TARGETS OF SIX TRANSCRIPTION FACTOR IN EPHYDATIA MUELLERI AND IDENTIFYING THE ROLE OF THE SUPEROXIDE DISMUTASE 6 IN HOST IMMUNE RESPONSE TO TRICHOMONAS VAGINALIS Gurbir Kaur Gudial University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Gudial, Gurbir Kaur. (2017). ISOLATING THE TARGETS OF SIX TRANSCRIPTION FACTOR IN EPHYDATIA MUELLERI AND IDENTIFYING THE ROLE OF THE SUPEROXIDE DISMUTASE 6 IN HOST IMMUNE RESPONSE TO TRICHOMONAS VAGINALIS. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/2972 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1 ISOLATING THE TARGETS OF SIX TRANSCRIPTION FACTOR IN EPHYDATIA MUELLERI AND IDENTIFYING THE ROLE OF THE SUPEROXIDE DISMUTASE 6 IN HOST IMMUNE RESPONSE TO TRICHOMONAS VAGINALIS by Gurbir K. Gudial A Thesis Submitted to the Office of Research and Graduate Studies In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE College of the Pacific Department of Biological Sciences University of the Pacific Stockton, CA 2017 2 ISOLATING THE TARGETS OF SIX TRANSCRIPTION FACTOR IN EPHYDATIA MUELLERI AND IDENTIFYING THE ROLE OF THE SUPEROXIDE DISMUTASE 6 IN HOST IMMUNE RESPONSE TO TRICHOMONAS VAGINALIS by Gurbir K. Gudial APPROVED BY: Thesis Advisor: Lisa Wrischnik, Ph.D.
    [Show full text]
  • The Sponge Genus Ephydatia from the High-Latitude Middle Eocene: Environmental and Evolutionary Significance
    PalZ (2016) 90:673–680 DOI 10.1007/s12542-016-0328-2 RESEARCH PAPER The sponge genus Ephydatia from the high-latitude middle Eocene: environmental and evolutionary significance 1 2 3 4 Andrzej Pisera • Renata Manconi • Peter A. Siver • Alexander P. Wolfe Received: 12 February 2016 / Accepted: 4 September 2016 / Published online: 28 September 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The freshwater sponge species Ephydatia cf. durch birotule Gemmoskleren als auch durch Megaskleren facunda Weltner, 1895 (Spongillida, Spongillidae) is (Oxen) belegt. Heute besiedelt E. facunda warm-tempe- reported for the first time as a fossil from middle Eocene rierte Wasserko¨rper, somit spricht ihr Vorkommen fu¨r ein lake sediments of the Giraffe kimberlite maar in northern warmes Klima in hohen Breiten wa¨hrend des Mittel- Canada. The sponge is represented by birotule gemmu- Eoza¨ns. Die morphologische A¨ hnlichkeit der Birotulen in loscleres as well as oxea megascleres. Today, E. facunda Bezug auf moderne konspezifische Formen legt eine pro- inhabits warm-water bodies, so its presence in the Giraffe trahierte morphologische Stasis nahe, vergleichbar mit locality provides evidence of a warm climate at high lati- derjenigen anderer kieseliger Mikrofossilien aus derselben tudes during the middle Eocene. The morphological simi- Fundstelle. larity of the birotules to modern conspecific forms suggests protracted morphological stasis, comparable to that repor- Schlu¨sselwo¨rter Porifera Su¨ßwasserschwa¨mme Eoza¨n ted for other siliceous microfossils from the same locality. Kanada Klima MorphologischeÁ Stasis Á Á Á Á Keywords Porifera Freshwater sponges Eocene Canada Climate MorphologicalÁ stasis Á Á Introduction Á Á Kurzfassung Die rezente Su¨ßwasserschwamm-Art Ephy- Freshwater sponges (Porifera, Spongillida) are common in datia cf.
    [Show full text]