Variation in Leaf Functional Traits Is Attributable to Species

Total Page:16

File Type:pdf, Size:1020Kb

Variation in Leaf Functional Traits Is Attributable to Species HOW DO LEAF FUNCTIONAL TRAITS VARY ACROSS ECOLOGICAL SCALES? Julie Messier Biology Department McGill University, Montréal, Québec, Canada February 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Masters of Science © Julie Messier 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-56854-5 Our file Notre référence ISBN: 978-0-494-56854-5 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. - ACKNOWLEDGEMENTS - First and above all, I would like to give my dearest thanks to my supervisors, Brian J. McGill and Martin J. Lechowicz, whose constant support, guidance and encouragements have been indispensable. Thanks to the National Science and Engineering Research Council (NSERC), the Smithsonian Tropical Research Institute, an aid-in-research grant from the Neo program of McGill University and the Organisme Québec-Amérique pour la Jeunesse for funding this research. I am also grateful to Ricardo Cossio for help with field work and to Andy Gonzalez, Omar Lopez, Joe Wright, Mirna Samaniego, Reinaldo Uriola and Jose Barahona for advice and invaluable technical help along the bumpy road of graduate studies. I would also like to thank Mélisanne Loiselle-Gascon, Vanessa Ward, Jaclyn Paterson and Kyle Simpson, for technical help in processing samples. I would like to give special thanks to two beloved close friends (Maryse & Gerardo), to wonderful lab mates (Volker, Richard, Peter & Sergio) and to my family (Danielle, Mario & Simon). You have supported me through hurdles and tribulations and fueled my motivation all along this winding road. Without you, I would not have made it through these challenging two years. ii - CONTRIBUTION OF AUTHORS - JM & BJM conceived the study question and sampling design; JM carried out field work and data collection with guidance from BJM & MJL; BJM conceived the data analysis and carried it out with JM; BJM, JM and MJL collaborated on interpreting the data and writing chapter 1 of the manuscript: “How do leaf functional traits vary across ecological scales?”; JM wrote the remainder of the thesis with guidance from BJM and MJL. iii - TABLE OF CONTENTS - ACKNOWLEDGEMENTS . ii CONTRIBUTION OF AUTHORS . iii TABLE OF CONTENTS . iv ABSTRACT . vi RÉSUMÉ . vii LIST OF TABLES . viii LIST OF FIGURES . ix GENERAL INTRODUCTION . 1 Traits at the Heart of Ecology & Evolution The Role of Functional Traits The Study of Functional Trait Variation Ecological Questions Addressed Through Trait Variation . A - Trait Plasticity . B - Correlations among traits . C - Functional Classifications . D - Trait Variation & Community Composition . E - Trait Variation & Environnemental Gradients . F - Trait Variation & Ecosystem Processes . G – Trait Variation & the Niche . Interdependence of Research Topics Integrating and Structuring Trait Variation: How Do Traits Vary Across Ecological Scales? Research Objectives & Hypotheses METHODS . 24 The Traits iv The Study Design Study Site Details Trait Measurement Protocol Statistical Analyses CHAPTER 1 - How Do Traits Vary Across Ecological Scales? . 30 Body of the Text Method Summary GENERAL CONCLUSION . 40 Endorsing Contrasting Viewpoints Intraspecific Trait Variability as “Noise” Trait Based Environmental Filters Future Directions: Are Species Distinct Entities in Trait Space? REFERENCES . 44 TABLES & FIGURES . 51 APPENDICES . 58 Appendix I. - Species List Appendix II. - Chapter 1. Supplementary Material . Methods . R Code Used in Partitioning of Variance . Results of Variance Partitioning Without Species Level . Calculation of Confidence Intervals v - ABSTRACT– Functional traits, measurements of adaptive aspects of the phenotype, are increasingly used for the study of plant community ecology. Despite their importance, we do not know which ecological scales contain the most variation in a given trait, which hampers assessment of the wider relevance of findings from studies conducted at only one scale. To address this deficiency, I studied the variance distribution of two key leaf functional traits (leaf mass per area - LMA and leaf dry matter content - LDMC) across six nested ecological scales (site, plot, species, tree, strata, leaf) in lowland tropical rainforests of Panama. Variance in both traits is uniformly distributed across all scales except the plot level, which shows virtually no variance despite high species turnover among plots. This contradicts the widely held belief that species-level variation predominates in organizing species distribution and abundance and indicates that communities regulate plant ensembles by filtering on leaf functional traits regardless of species. vi - RÉSUMÉ - Les traits fonctionnels, attributs indicatifs des aspects adaptatifs du phénotype, sont de plus en plus utilisés pour étudier l’écologie des communautés végétales. Malgré l’importance des traits fonctionnels, nous ne savons pas à quelle échelle écologique un trait donné varie le plus, ce qui nous empêche de mettre dans un contexte général les découvertes des études conduites à une seule échelle. Pour combler cette lacune, j’ai étudié dans les forêts tropicales humides tropical du Panama la distribution de la variance de deux traits fonctionnels foliaires clés (la masse par surface foliaire - LMA et le contenu foliaire en matière sèche - LDMC) à travers six échelles écologiques emboitées (le site, la parcelle, l’espèce, l’arbre, la strate et la feuille). La variance de ces deux traits est uniformément distribuée à travers toutes les échelles, sauf à l’échelle de la parcelle qui ne présente aucune variance malgré la forte différence de composition d’espèces entre les parcelles d’un même site. Ces résultats vont à l’encontre de la croyance populaire selon laquelle la variation interspécifique joue un rôle prédominant dans le contrôle de la distribution et l’abondance des espèces. Ils indiquent plutôt que les communautés régulent l’assemblage des végétaux en exerçant un filtre sur les traits fonctionnels, indépendamment de l’espèce. vii - LIST OF TABLES - Table 1. Summary of the seven main research areas involving p.42 functional traits. Table 2. Possible expected outcomes of partitioning the variance in p.44 traits across ecological scales according to different research paradigms. Table 3. Descriptions of study sites p.44 Table 4. Variance partitioning of the full nested linear models on p.45 leaf mass per area (LMA) and leaf dry matter content (LDMC) across six nested ecological scales. Table A1. List of tree species sampled with number of leaves p.60 sampled per species and site. Table S1. Variance partitioning of an alternative nested linear p.67 model of LMA and LDMC across five nested ecological scales (Leaf, Strata, Tree, Plot and Site), leaving out the species scale. viii - LIST OF FIGURES - Figure 1. Location of study sites. PNSL – Parque Natural San p.46 Lorenzo. BCI – Barro Colorado Island. PNM – Parque Natural Metropolitano. Map from Google Earth. Figure 2. Boxplot of LMA and LDMC values for the 17 most p.47 abundant species (species for which 30 or more leaves were measured). Figure 3. Histogram of values for LMA and LDMC by site and by p.48 plot. Solid histograms represent the sites: PNM (red), PNSL (black) & BCI (blue). Lines represent the histograms of individual plots for each site, colors coded accordingly. Figure S1. LMA & LDMC variance partitioning across ecological p.68 scales for the full model (with species level included) and the alternative model (without species level). ix - GENERAL INTRODUCTION - Traits at the Heart of Ecology & Evolution 5 The distribution of life on the planet is extremely patchy; most species are absent from almost everywhere (Begon et al. 1996). Different organisms live in different environments because each species is adapted
Recommended publications
  • Number of Plant Species That Correspond with Data Obtained from at Least Two Other Participants
    Promotor: Prof. Dr. ir. Patrick Van Damme Faculty of Bioscience Engineering Department of Plant Production Laboratory of Tropical and Sub-Tropical Agriculture and Ethnobotany Coupure links 653 B-9000 Gent, Belgium ([email protected]) Co-Promotor: Dr. Ina Vandebroek Institute of Economic Botany The New York Botanical Garden Bronx River Parkway at Fordham Road Bronx, New York 10458, USA ([email protected]) Chairman of the Jury: Prof. Dr. ir. Norbert De Kimpe Faculty of Bioscience Engineering Department of Organic Chemistry Coupure links 653 B-9000 Gent, Belgium ([email protected]) Members of the Jury: Prof. Dr. ir. Christian Vogl Prof. Dr. Paul Goetghebeur University of Natural Resources and Faculty of Science Applied Life Sciences Department of Biology Institut für Ökologischen Landbau K.L. Ledeganckstraat 35 Gregor Mendelstrasse 33 B-9000 Gent, Belgium A-1180, Vienna, Austria ([email protected]) ([email protected]) Prof. Dr. Mieke Verbeken Prof. Dr. ir. François Malaisse Faculty of Science Faculté Universitaire des Sciences Department of Biology Agronomiques K.L. Ledeganckstraat 35 Laboratoire d’Ecologie B-9000 Gent, Belgium Passage des Déportés, 2 ([email protected]) B-5030 Gembloux, Belgium ([email protected]) Prof. Dr. ir. Dirk Reheul Faculty of Bioscience Engineering Department of Plant Production Coupure links 653 B-9000 Gent, Belgium ([email protected]) Dean: Prof. Dr. ir. Herman Van Langenhove Rector: Prof. Dr. Paul Van Cauwenberge THOMAS EVERT QUANTITATIVE ETHNOBOTANICAL RESEARCH
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Biomass and Nutrient Pools of Canopy and Terrestrial Components in a Primary and a Secondary Montane Cloud Forest, Costa Rica Nallini M
    Available online at www.sciencedirect.com ELSEWER Forest Ecology and Management 198 (2004) 223-236 ww.elsevier.co~~1ate/~oreco Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica Nallini M. PJadkarnia-*,Douglas Schaefers, Teri J. Matelson', Rodrigo solanob "ntc Eve~reenStare Cnil~ge~Olv~npra, WA 98505, USA h~onleverde,Apnnodo 5655. Su$rtu. E1~'luna.Pruriorenos, Ca.~tnRlcn Received 27 July 2003, received in revised form 1 September 2003; accepted 27 April 2004 Abstract Canopy-dwelling epiphytes and their associated dead organic matter exist as complex subsystems of many forests. but they have only rarely been quanritied in rhe context of the whole ecosyqtem. Wca~sessedthe biomass and nutrient capital of canopy- dwellrng and terrestrially rooted components afa primary and an adjacent secondary montane forest in Monteverde, Costa Rica. %tal ahnvcground terrestrislly rooted biomass (dry wetght) was 490.1 and 151 t ha-' in thc pnmary and secondary forest, respectively. The pdmory foreqt supponed a total canopy biomass of 33.1 t ha-'; the secondary forc~tsupported only 0.5% of that. 0.2 t ha-'. Tmnk and branch epiphyte biomass in the primary forcst was over 40 times and 100 times greater than trunk and branch epiphyte biomass in the secondary forest. The bulk (ca. 95%) of the ecosystem biornasq in trunkand bmch wood, which is slower to decompore than the nnn-woody. labile components of foliage and non-woody epiphytes. In contrast to the primary forest. whcredcad organic matler (crown humus. intcrccpted litterfall) compri~edover 60% of thc total epiphytic matenal, there were only trace amounts in the secondary forest.
    [Show full text]
  • 35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods
    35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods. & Dressl. each segment, usually only the uppermost persisting, linear, 5-25 cm long, 1.5-4.5 mm broad, obscurely emar- Psygmorchis pusilla (L.) Dods. & Dressl., Phytologia ginate at apex. Inflorescences single flowers or more com- 24:288. 1972 monly few-flowered fascicles or abbreviated, few-flowered Oncidium pusillum (L.) Reichb.f. racemes, borne at apex of stems; flowers white, 3.5-4.5 Dwarf epiphyte, to 8 cm tall; pseudobulbs lacking. Leaves mm long; sepals 3-4.5 mm long, 1-2 mm wide; petals as ± dense, spreading like a fan, equitant, ± linear, 2-6 cm long as sepals, 0.5-1 mm wide; lip 3.5-5 mm long, 2-3.5 long, to 1 cm wide. Inflorescences 1-6 from base of mm wide, entire or obscurely trilobate; column narrowly leaves, about equaling leaves, consisting of long scapes, winged. Fruits oblong-elliptic, ca 1 cm long (including the apices with several acute, strongly compressed, im- the long narrowly tapered base), ca 2 mm wide. Croat bricating sheaths; flowers produced in succession from 8079. axils of sheaths; flowers 2-2.5 cm long; sepals free, Common in the forest, usually high in trees. Flowers spreading, bright yellow, keeled and apiculate, the dorsal in the early dry season (December to March), especially sepal ca 5 mm long, nearly as wide, the lateral sepals in January and February. The fruits mature in the middle 4-5 mm long, 1-1.5 mm wide, hidden by lateral lobes to late dry season. of lip; petals to 8 mm long and 4 mm wide, bright yellow Confused with S.
    [Show full text]
  • Acetolysed Thin Layer Of
    Pollen morphology of the genus Hydnocarpus (Flacourtiaceae) with notes on related genera J. Schaeffer Rijksherbarium, Leiden Contents Summary 65 I Introduction 65 II General morphology 66 III Systematic descriptions 66 IV Pollen types 76 Pollen and V morphology taxonomy 77 References 79 Summary Pollen of ofthe described. Two grains 34 species genus Hydnocarpus(Flacourtiaceae) are pollen types, one of which is subdivided in two subtypes, are distinguished. Within Flacourtiaceae the pollen of Hydnocarpus In is more or less isolated, but the related genus Chlorocarpa has rather similar pollen. sculpture there exists some resemblance to Paropsia (Passifloraceae). I. Introduction The present study forms part of a general pollenmorphological survey of the family Flacourtiaceae, initiated at the Rijksherbarium in collaboration with Dr. H. Sleumer. The selected for the first detailed because genus Hydnocarpus was study it proved to have rather characteristic pollen types and is concentrated in SE. Asia and the Malesian region. Moreover, an adequate amountof well-determinedmaterial as well as a recent revision ot In the genus (Sleumer, 1954) were available. total 34 species could be investigated, of the total numberof known. representing 85 % species In addition, the pollen of a large other number of Flacourtiaceae was cursorily examined, in order to asses the pollen of within the morphological relationships Hydnocarpus family. The pollen of the genera and which resemble that of described Neoptychocarpus Chlorocarpa, Hydnocarpus most, is in more detail. Erdtman described Previously, only (1952) has, very briefly, the pollen of Hydnocarpus rather the elmeri which, however, proved to be atypical of genus. The pollen material was acetolysed for two minutes, mounted in glycerin jelly and photographed with a Leitz apochromatic OI objective (90/1.40).
    [Show full text]
  • Additions to the Flora of Panama, with Comments on Plant Collections and Information Gaps
    15 4 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (4): 601–627 https://doi.org/10.15560/15.4.601 Additions to the flora of Panama, with comments on plant collections and information gaps Orlando O. Ortiz1, Rodolfo Flores2, Gordon McPherson3, Juan F. Carrión4, Ernesto Campos-Pineda5, Riccardo M. Baldini6 1 Herbario PMA, Universidad de Panamá, Vía Simón Bolívar, Panama City, Panama Province, Estafeta Universitaria, Panama. 2 Programa de Maestría en Biología Vegetal, Universidad Autónoma de Chiriquí, El Cabrero, David City, Chiriquí Province, Panama. 3 Herbarium, Missouri Botanical Garden, 4500 Shaw Boulevard, St. Louis, Missouri, MO 63166-0299, USA. 4 Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil. 5 Smithsonian Tropical Research Institute, Luis Clement Avenue (Ancón, Tupper 401), Panama City, Panama Province, Panama. 6 Centro Studi Erbario Tropicale (FT herbarium) and Dipartimento di Biologia, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy. Corresponding author: Orlando O. Ortiz, [email protected]. Abstract In the present study, we report 46 new records of vascular plants species from Panama. The species belong to the fol- lowing families: Anacardiaceae, Apocynaceae, Aquifoliaceae, Araceae, Bignoniaceae, Burseraceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Cucurbitaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Gentianaceae, Laciste- mataceae, Lauraceae, Malpighiaceae, Malvaceae, Marattiaceae, Melastomataceae, Moraceae, Myrtaceae, Ochnaceae, Orchidaceae, Passifloraceae, Peraceae, Poaceae, Portulacaceae, Ranunculaceae, Salicaceae, Sapindaceae, Sapotaceae, Solanaceae, and Violaceae. Additionally, the status of plant collections in Panama is discussed; we focused on the areas where we identified significant information gaps regarding real assessments of plant biodiversity in the country.
    [Show full text]
  • A Taxonomic Comparison of Local Habitat Niches of Tropical Trees
    Oecologia (2013) 173:1491–1498 DOI 10.1007/s00442-013-2709-5 COMMUNITY ECOLOGY - ORIGINAL RESEARCH A taxonomic comparison of local habitat niches of tropical trees Claire A. Baldeck · Steven W. Kembel · Kyle E. Harms · Joseph B. Yavitt · Robert John · Benjamin L. Turner · George B. Chuyong · David Kenfack · Duncan W. Thomas · Sumedha Madawala · Nimal Gunatilleke · Savitri Gunatilleke · Sarayudh Bunyavejchewin · Somboon Kiratiprayoon · Adzmi Yaacob · Mohd. N. Nur Supardi · Renato Valencia · Hugo Navarrete · Stuart J. Davies · Stephen P. Hubbell · James W. Dalling Received: 2 March 2012 / Accepted: 6 June 2013 / Published online: 13 July 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract The integration of ecology and evolution- forest dynamics plots. Niche overlap values, indicating the ary biology requires an understanding of the evolutionary similarity of two species’ distributions along soil or topo- lability in species’ ecological niches. For tropical trees, graphic axes, were calculated for all pairwise combinations specialization for particular soil resource and topographic of co-occurring tree species at each study site. Congeneric conditions is an important part of the habitat niche, influ- species pairs often showed greater niche overlap (i.e., more encing the distributions of individual species and overall similar niches) than non-congeneric pairs along both soil tree community structure at the local scale. However, little and topographic axes, though significant effects were found is known about how these habitat niches are related to the for only five sites based on Mantel tests. No evidence for evolutionary history of species. We assessed the relation- taxonomic effects was found at the family level. Our results ship between taxonomic rank and tree species’ soil resource indicate that local habitat niches of trees exhibit varying and topographic niches in eight large (24–50 ha) tropical degrees of phylogenetic signal at different sites, which may have important ramifications for the phylogenetic structure Communicated by Walt Carson.
    [Show full text]
  • New Species Discoveries in the Amazon 2014-15
    WORKINGWORKING TOGETHERTOGETHER TO TO SHARE SCIENTIFICSCIENTIFIC DISCOVERIESDISCOVERIES UPDATE AND COMPILATION OF THE LIST UNTOLD TREASURES: NEW SPECIES DISCOVERIES IN THE AMAZON 2014-15 WWF is one of the world’s largest and most experienced independent conservation organisations, WWF Living Amazon Initiative Instituto de Desenvolvimento Sustentável with over five million supporters and a global network active in more than 100 countries. WWF’s Mamirauá (Mamirauá Institute of Leader mission is to stop the degradation of the planet’s natural environment and to build a future Sustainable Development) Sandra Charity in which humans live in harmony with nature, by conserving the world’s biological diversity, General director ensuring that the use of renewable natural resources is sustainable, and promoting the reduction Communication coordinator Helder Lima de Queiroz of pollution and wasteful consumption. Denise Oliveira Administrative director Consultant in communication WWF-Brazil is a Brazilian NGO, part of an international network, and committed to the Joyce de Souza conservation of nature within a Brazilian social and economic context, seeking to strengthen Mariana Gutiérrez the environmental movement and to engage society in nature conservation. In August 2016, the Technical scientific director organization celebrated 20 years of conservation work in the country. WWF Amazon regional coordination João Valsecchi do Amaral Management and development director The Instituto de Desenvolvimento Sustentável Mamirauá (IDSM – Mamirauá Coordinator Isabel Soares de Sousa Institute for Sustainable Development) was established in April 1999. It is a civil society Tarsicio Granizo organization that is supported and supervised by the Ministry of Science, Technology, Innovation, and Communications, and is one of Brazil’s major research centres.
    [Show full text]
  • A New Miocene Malpighialean Tree from Panama
    Rodriguez-ReyesIAWA Journal et al. – New38 (4), Miocene 2017: malpighialean437–455 wood 437 Panascleroticoxylon crystallosa gen. et sp. nov.: a new Miocene malpighialean tree from Panama Oris Rodriguez-Reyes1, 2, Peter Gasson3, Carolyn Thornton4, Howard J. Falcon-Lang5, and Nathan A. Jud6 1Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón Republic of Panamá 2Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 000 17, Panamá 0824, Panamá 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom 4Florissant Fossil Beds National Monument, P.O. Box 185, 15807 Teller County Road 1, Florissant, CO 80816, U.S.A. 5Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 6L.H. Bailey Hortorium, Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, U.S.A. *Corresponding author; e-mail: [email protected] ABSTRACT We report fossil wood specimens from two Miocene sites in Panama, Central America: Hodges Hill (Cucaracha Formation; Burdigalian, c.19 Ma) and Lago Alajuela (Alajuela Formation; Tortonian, c.10 Ma), where material is preserved as calcic and silicic permineralizations, respectively. The fossils show an unusual combination of features: diffuse porous vessel arrangement, simple perforation plates, alternate intervessel pitting, vessel–ray parenchyma pits either with much reduced borders or similar to the intervessel pits, abundant sclerotic tyloses, rays markedly heterocellular with long uniseriate tails, and rare to absent axial parenchyma. This combination of features allows assignment of the fossils to Malpighiales, and we note similarities with four predominantly tropical families: Salicaceae, Achariaceae, and especially, Phyllanthaceae, and Euphorbiaceae.
    [Show full text]
  • Multilayered Structure of Tension Wood Cell Walls in Salicaceae Sensu Lato
    Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance Barbara Ghislain, Eric-André Nicolini, Raïssa Romain, Julien Ruelle, Arata Yoshinaga, Mac H. Alford, Bruno Clair To cite this version: Barbara Ghislain, Eric-André Nicolini, Raïssa Romain, Julien Ruelle, Arata Yoshinaga, et al.. Mul- tilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance. Botanical Journal of the Linnean Society, Linnean Society of London, 2016, 182 (4), pp.744-756. 10.1111/boj.12471. hal-01392845 HAL Id: hal-01392845 https://hal.archives-ouvertes.fr/hal-01392845 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance Barbara Ghislain1*, Eric-André Nicolini2, Raïssa Romain1, Julien Ruelle3, Arata Yoshinaga4, Mac H. Alford5, Bruno Clair1 1 CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France 2 CIRAD, AMAP, botAnique et bioinforMatique de l’Architecture des Plantes, Campus Agronomique BP 701, 97387 Kourou, French Guiana, France 3 INRA, Laboratoire d’Etude des Ressources Forêt-Bois (LERFoB), 54280 Champenoux, Nancy, France 4 Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Sakyo- ku, Kyoto 606-8502, Japan 5 Department of Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406, U.S.A.
    [Show full text]
  • Plant DNA Barcodes and a Community Phylogeny of a Tropical Forest Dynamics Plot in Panama
    Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama W. John Kressa,1, David L. Ericksona, F. Andrew Jonesb,c, Nathan G. Swensond, Rolando Perezb, Oris Sanjurb, and Eldredge Berminghamb aDepartment of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; bSmithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa Anco´n, Republic of Panama´; cImperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom; and dCenter for Tropical Forest Science - Asia Program, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138 Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, September 3, 2009 (received for review May 13, 2009) The assembly of DNA barcode libraries is particularly relevant pling: the conserved coding locus will easily align over all taxa within species-rich natural communities for which accurate species in a community sample to establish deep phylogenetic branches identifications will enable detailed ecological forensic studies. In whereas the hypervariable region of the DNA barcode will align addition, well-resolved molecular phylogenies derived from these more easily within nested subsets of closely related species and DNA barcode sequences have the potential to improve investiga- permit relationships to be inferred among the terminal branches tions of the mechanisms underlying community assembly and of the tree. functional trait evolution. To date, no studies have effectively In this respect a supermatrix design (8, 9) is ideal for using a applied DNA barcodes sensu strictu in this manner. In this report, mixture of coding genes and intergenic spacers for phylogenetic we demonstrate that a three-locus DNA barcode when applied to reconstruction across the broadest evolutionary distances, as in 296 species of woody trees, shrubs, and palms found within the the construction of community phylogenies (10).
    [Show full text]
  • (SALICACEAE) Laurence J
    THE IDENTITY AND TYPIFICATION OF VALLIERA TRIPLINERVIS (SALICACEAE) Laurence J. Dorr Mac H. Alford Department of Botany Department of Biological Sciences National Museum of Natural History, MRC-166 The University of Southern Mississippi Smithsonian Institution, P.O. Box 37012 118 College Drive, Box 5018 Washington, D.C. 20013-7012, U.S.A. Hattiesburg, Mississippi 39406, U.S.A. [email protected] [email protected] ABSTRACT The genus Valliera is reduced to synonymy under Neosprucea. Its sole species, V. triplinervis, is considered to be conspecific with N. grandi- flora. A lectotype is designated for the former species name. KEY WORDS: Neosprucea, Salicaceae, South America, Valliera RESUMEN El género Valliera se reduce a sinonimia bajo Neosprucea. Su única especie, V. triplinervis, se considera conespecífica con N. grandifolia. Se designa un lectotipo para el nombre de la especie anterior. PALABRAS CLAVES: Neosprucea, Salicaceae, South America, Valliera The monotypic genus Valliera Ruiz & Pav. was published posthumously in the fifth volume of theFlora Peruviana, et Chilensis (Ruiz & Pavon 1958, 1959), the original 19th century manuscript resurrected by Alvarez López who also provided brief introductory notes. The authors of the generic name were not explicit about its family placement; they included it in “Polyandria Monogynia” and inserted it between descriptions of species of Marcgraviaceae and Muntingiaceae. Original material (MA [MA815601], see JSTOR-Plants 2018; P [P06822531], see MNHN 2018) is annotated “Muntingia accedens,” which indicates that Ruiz and Pavon recognized a similarity to Muntingia L. (Muntingiaceae). Valliera was assigned to Tiliaceae in Index Kewensis (Taylor 1966), and this is where it is placed in several other indices (Farr et al.
    [Show full text]