Simultaneous Determination of Nine Bioactive

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Determination of Nine Bioactive Accepted Manuscript Title: Simultaneous determination of nine bioactive compounds in Yijin-tang via high-performance liquid chromatography and liquid chromatography-electrospray ionization-mass spectrometry Author: Hye Jin Yang Nam-Hui Yim Kwang Jin Lee Min Jung Gu Bohyoung Lee Youn-Hwan Hwang Jin Yeul Ma PII: S2213-4220(16)30030-0 DOI: http://dx.doi.org/doi:10.1016/j.imr.2016.04.005 Reference: IMR 200 To appear in: Received date: 14-10-2015 Revised date: 30-3-2016 Accepted date: 7-4-2016 Please cite this article as: Hye Jin YangNam-Hui YimKwang Jin LeeMin Jung GuBohyoung LeeYoun-Hwan HwangJin Yeul Ma Simultaneous determination of nine bioactive compounds in Yijin-tang via high-performance liquid chromatography and liquid chromatography-electrospray ionization-mass spectrometry (2016), http://dx.doi.org/10.1016/j.imr.2016.04.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Original Article 2 3 Simultaneous determination of nine bioactive compounds in Yijin-tang via high- 4 performance liquid chromatography and liquid chromatography-electrospray 5 ionization-mass spectrometry 6 7 Hye Jin Yang, Nam-Hui Yim, Kwang Jin Lee, Min Jung Gu, Bohyoung Lee, Youn-Hwan * * 8 Hwang and Jin Yeul Ma 9 10 KM Application Center, Korea Institute of Oriental Medicine, 11 70 Cheomdanro, Dong-gu, Daegu 701-300, Republic of Korea 12 13 Running title: Simultaneous determination of Yijin-tang via HPLC-DAD and LC/MS 14 * 15 Address for co-corresponding author 16 Youn-Hwan Hwang, Ph.D. 17 Senior Researcher 18 KM Application Center, 19 Korea Institute ofAccepted Oriental Medicine, Manuscript 20 70 Cheomdanro, Dong-gu, Daegu 701-300, 21 Republic of Korea 22 Tel: +82-53-940-3873 23 Fax: +82-53-940-3899 24 E-mail: [email protected] 1 Page 1 of 33 * 1 Address for co-corresponding author 2 Jin Yeul Ma, Ph.D. 3 Principal Investigator / Director 4 KM Application Center, 5 Korea Institute of Oriental Medicine, 6 70 Cheomdanro, Dong-gu, Daegu 701-300, 7 Republic of Korea 8 Tel: +82-53-940-3811 9 Fax: +82-53-940-3899 10 E-mail: [email protected] 11 Accepted Manuscript 2 Page 2 of 33 1 Original Article 2 3 Simultaneous determination of nine bioactive compounds in Yijin-tang via high- 4 performance liquid chromatography and liquid chromatography-electrospray 5 ionization-mass spectrometry 6 Accepted Manuscript 3 Page 3 of 33 1 Abstract 2 Background: Yijin-tang (YJ) has been used traditionally for the treatment of cardiovascular 3 conditions, nausea, vomiting, gastroduodenal ulcers, and chronic gastritis. In this study, a simple 4 and sensitive high-performance liquid chromatography (HPLC) method was developed for the 5 quantitation of nine bioactive compounds in YJ: homogentisic acid, liquiritin, naringin, hesperidin, 6 neohesperidin, liquiritigenin, glycyrrhizin, 6-gingerol, and pachymic acid. 7 Method: Chromatographic separation of the analytes was achieved on an RS tech C18 8 column (4.6 mm × 250 mm, 5 μm) using a mobile phase composed of water containing 0.1% (v/v) 9 trifluoroacetic acid and acetonitrile with a gradient elution at a flow rate of 1.0 mL/min. 2 10 Results: Calibration curves for all analytes showed good linearity (R ≥ 0.9995). Lower 11 limits of detection and lower limits of quantification were in the ranges of 0.03 - 0.17 μg/mL and 12 0.09 - 0.43 μg/mL, respectively. Relative standard deviations (RSDs) (%) for intra- and inter-day 13 assays were below 3%. The recovery of components ranged from 98.09% to 103.78%, with RSDs 14 (%) values ranging from 0.10% to 2.59%. 15 Conclusion: This validated HPLC method was applied to qualitative and quantitative 16 analyses of nine bioactive compounds in YJ and fermented YJ, and may be a useful tool for the 17 quality control of YJ. 18 19 Keywords: HPLC-DAD, LC/MS, Simultaneous determination, Validation, Yijin-tang 20 Accepted Manuscript 4 Page 4 of 33 1 1. Introduction 2 Yijin-tang (YJ, Erchen-tang in Chinese, Nichin-to in Japanese) is a traditional prescription 3 for the prevention and treatment of diverse diseases; it has been used widely to treat nausea, 1 4 vomiting, gastroduodenal ulcers, and chronic gastritis. YJ has also been shown to improve 5 digestive function in clinical research trials. Recently, YJ was reported to show therapeutic effects 6 on diseases of the circulatory system and protective effects against gastric mucosa in in vivo 2,3 7 experiments. YJ is composed of Pinellia ternata Breitenbach, Citrus unshiu Markovich, Poria 8 cocos Wolf, Glycyrrhiza uralensis Fisch, and Zingiber officinale Roscoe, according to the Korean 9 Herbal Pharmacopoeia. The major components of each herbal medicine in YJ are known to be 10 bioactive components, including flavonoids (e.g. liquiritin, liquiritigenin, hesperidin, rutin, naringin, 11 neohesperidin, and poncirin), triterpenoids (e.g. glycyrrhizin, pachymic acid, and eburicoic acid), 4-10 12 phenolic acids (e.g. homogentisic acid) and pungent principles (e.g. 6-gingerol and 6-shogaol). 13 These compounds, derived from each herbal medicine, have various pharmacological activities 4, 11-16 14 including anti-cancer, anti-inflammatory, anti-bacterial and anti-oxidant activities. In this 15 study, specific biomarkers were selected to evaluate the quality of YJ and its ingredients, including 16 homogentisic acid for P. ternata Breitenbach, hesperidin, naringin and neohesperidin for C. unshiu 17 Markovich, pachymic acid for P. cocos Wolf, liquiritigenin and glycyrrhizin for G. uralensis Fisch, 18 and 6-gigerol for Z. officinale Roscoe (Table 1). 19 Several analytical methods for these compounds have been developed for qualitative and 20 quantitative analysesAccepted using high-performance liquid chromatography-diode-arrayManuscript detector (HPLC- 17-25 21 DAD) and liquid chromatography/mass spectrometry (LC/MS). However, these methods cannot 22 simultaneously determine the multiple bioactive components in YJ. Although a HPLC-DAD 23 method to detect six compounds in YJ was recently developed, the identification and quantification 24 of compounds based on retention times and UV spectra are limited due to the interference of non- 26 25 target molecular components in YJ. Therefore, methods for simultaneously detecting these 5 Page 5 of 33 1 biomarkers in YJ is needed to ensure efficient quality control and pharmaceutical evaluation using 2 LC/MS. 3 In this study, a rapid, simple, and efficient analytical method for nine biomarkers in YJ was 4 developed using HPLC-DAD for quantitation and LC/MS for identification. Subsequently, the 5 method was applied to chemically profile targeted analytes in YJ and Lactobacillus-fermented YJ. Accepted Manuscript 6 Page 6 of 33 1 2. Materials and methods 2 3 2.1. Chemicals and reagents 4 Homogentisic acid, liquiritin, naringin, neohesperidin, and trifluoroacetic acid (TFA) were 5 purchased from Sigma-Aldrich Co. (St. Louis, MO, USA.). Liquiritigenin, 6-gingerol, and 6 pachymic acid were obtained from Faces Biochemical Co., Ltd. (Wuhan, China). Hesperidin and 7 glycyrrhizin were purchased from ICN Biomedicals (Santa Ana, CA, USA) and Tokyo Chemical 8 Industry Co., Ltd. (Tokyo, Japan), respectively. The purity of all standards was above 97%. All 9 herbal medicines were purchased at the Yeongcheon traditional herbal market (Yeongcheon, South 10 Korea). The chemical structures of the nine bioactive compounds are shown in Figure 1. 11 HPLC-grade acetonitrile was purchased from J.T. Baker Inc. (Philipsburg, NJ, USA). Deionized 12 water was prepared using an ultrapure water production apparatus (Millipore, Billerica, MA, USA). 13 14 2.2. Preparation and fermentation of YJ 15 All herb samples were purchased from the Yeongcheon Herbal Store (Yeongcheon, South 16 Korea) and all specimens (#50 for P. ternata Breitenbach, #22 for C. unshiu Markovich, #61 for P. 17 cocos Wolf, #3 for G. uralensis Fisch, and #6 for Z. officinale Roscoe) were stored in the herbarium 18 of the KM Application Center, Korea Institute of Oriental Medicine. Five medicinal herbs (1.95 kg, 19 Table 1) were extracted in 19.5 L of distilled water for 3 hours using a COSMOS-660 extractor 20 (Kyungseo MachineAccepted Co., Incheon, Korea). Extracts wereManuscript sieved (106 μm) to yield 15.8 L of the 21 decoction. To ferment YJ, ten bacterial strains (including L. rhamnosus KFRI 144, L. acidophillus 22 KFRI 150, L. amylophillus KFRI 161, L. acidophillus KFRI 162, L. platarum KFRI 166, L. 23 acidophillus KFRI 217, L. brevis KFRI 221, L. brevis KFRI 227, L. curvatus KFRI 231, L. 24 acidophillus KFRI 341) were obtained from the Korean Food Research Institute (Seongnam, Korea). 25 Bacterial strains were cultured in MRS broth at 37°C for 24 hours and viable cell counts of each 7 Page 7 of 33 1 strain were determined in triplicate using a pour plate method on MRS agar. Solutions of YJ 2 extracts were adjusted to pH 8 using 1 M sodium hydroxide and autoclaved for 15 min at 121°C. 9 3 Sterilized-SE solutions (500 mL) were inoculated with 5 mL of the inoculum (1% v/v, 2 × 10 4 CFU/mL). Inoculated samples were incubated at 37°C for 48 hours and a brownish powder of 5 fermented YJ extract was obtained via lypophilization. These fermented YJ (f-YJ) samples were 6 stored at 4°C before use. 7 8 2.3. Preparation of calibration standards, quality control, and analytical samples 9 Standard stock solutions of the nine bioactive standards – homogentisic acid, liquiritin, 10 naringin, hesperidin, neohesperidin, liquiritigenin, glycyrrhizin, 6-gingerol, and pachymic acid – 11 were prepared at concentrations of 200, 200, 200, 800, 200, 200, 600, 200, and 400 μg/mL, 12 respectively, by dissolving them in methanol.
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Thesis of Potentially Sweet Dihydrochalcone Glycosides
    University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the­ sis has been supplied on condition that anyone who con­ sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub­ lished without the prior written consent of the author.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • Novel Neohesperidin Dihydrochalcone Analogue Inhibits Adipogenic Differentiation of Human Adipose-Derived Stem Cells Through the Nrf2 Pathway
    International Journal of Molecular Sciences Article Novel Neohesperidin Dihydrochalcone Analogue Inhibits Adipogenic Differentiation of Human Adipose-Derived Stem Cells through the Nrf2 Pathway Ga Eun Han 1,†, Hee-Taik Kang 2,† ID , Sungkyun Chung 3, Changjin Lim 3, John A. Linton 4, Jin-Hee Lee 1, Wooki Kim 5, Seok-Ho Kim 3,* and Jong Hun Lee 1,* 1 Department of Food science and Biotechnology, College of Life Science, CHA University, Seongnam-si 13488, Korea; [email protected] (G.E.H.); [email protected] (J.-H.L.) 2 Department of Family Medicine, College of Medicine, Chungbuk National University, Chungbuk 28644, Korea; [email protected] 3 Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si 13488, Korea; [email protected] (S.C.); [email protected] (C.L.) 4 Department of Family Medicine, Severance Hospital, Yonsei University, Seoul 03722, Korea; [email protected] 5 Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; [email protected] * Correspondence: [email protected] (S.-H.K.); [email protected] (J.H.L.); Tel.: +82-31-881-7169 (S.-H.K.); +82-31-881-7158 (J.H.L.) † These authors contributed equally to this work. Received: 18 June 2018; Accepted: 24 July 2018; Published: 29 July 2018 Abstract: Obesity, characterized by excess lipid accumulation, has emerged as a leading public health problem. Excessive, adipocyte-induced lipid accumulation raises the risk of metabolic disorders. Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that can be obtained from abundant adipose tissue.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Chemical Profiles and Simultaneous Quantification of Aurantii Fructus By
    molecules Article Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods Yingjie He 1,2,† ID , Zongkai Li 3,†, Wei Wang 2, Suren R. Sooranna 4 ID , Yiting Shi 2, Yun Chen 2, Changqiao Wu 2, Jianguo Zeng 1,2, Qi Tang 1,2,* and Hongqi Xie 1,2,* 1 Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; [email protected] (Y.H.); [email protected] (J.Z.) 2 National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China; [email protected] (W.W.); [email protected] (Y.S.); [email protected] (Y.C.); [email protected] (C.W.) 3 School of Medicine, Guangxi University of Science and Technology, Liuzhou 565006, China; [email protected] 4 Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, UK; [email protected] * Correspondence: [email protected] (Q.T.); [email protected] (H.X.); Fax: +86-0731-8461-5293 (H.X.) † These authors contributed equally to this work. Received: 1 August 2018; Accepted: 29 August 2018; Published: 30 August 2018 Abstract: Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • Nine Traditional Chinese Herbal Formulas for the Treatment of Depression: an Ethnopharmacology, Phytochemistry, and Pharmacology Review
    Journal name: Neuropsychiatric Disease and Treatment Article Designation: Review Year: 2016 Volume: 12 Neuropsychiatric Disease and Treatment Dovepress Running head verso: Feng et al Running head recto: Chinese herbal formulas as antidepressants open access to scientific and medical research DOI: http://dx.doi.org/10.2147/NDT.S114560 Open Access Full Text Article REVIEW Nine traditional Chinese herbal formulas for the treatment of depression: an ethnopharmacology, phytochemistry, and pharmacology review Dan-dan Feng Abstract: Depression is a major mental disorder, and is currently recognized as the Tao Tang second-leading cause of disability worldwide. However, the therapeutic effect of antidepressants Xiang-ping Lin remains unsatisfactory. For centuries, Chinese herbal formulas (CHFs) have been widely used in Zhao-yu Yang the treatment of depression, achieving better therapeutic effects than placebo and having fewer Shu Yang side effects than conventional antidepressants. Here, we review the ethnopharmacology, phy- Zi-an Xia tochemistry, and pharmacology studies of nine common CHFs: “banxia houpo” decoction, “chaihu shugansan”, “ganmaidazao” decoction, “kaixinsan”, “shuganjieyu” capsules, “sinisan”, Yun Wang “wuling” capsules, “xiaoyaosan”, and “yueju”. Eight clinical trials and seven meta-analyses have Piao Zheng supported the theory that CHFs are effective treatments for depression, decreasing Hamilton Yang Wang Depression Scale scores and showing few adverse effects. Evidence from 75 preclinical studies Chun-hu Zhang has also elucidated the multitarget and multipathway mechanisms underlying the antidepres- Laboratory of Ethnopharmacology, sant effect of the nine CHFs. Decoctions, capsules, and pills all showed antidepressant effects, Institute of Integrated Traditional ranked in descending order of efficacy. According to traditional Chinese medicine theory, these Chinese and Western Medicine, Xiangya Hospital, Central South CHFs have flexible compatibility and mainly act by soothing the liver and relieving depression.
    [Show full text]
  • Glycosides in Lemon Fruit
    Food Sci. Technol. Int. Tokyo, 4 (1), 48-53, 1998 Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit Yoshiaki MIYAKE,1 Kanefumi YAMAMOT0,1 Yasujiro MORIMITSU2 and Toshihiko OSAWA2 * Central Research Laboratory of Pokka Corporation, Ltd., 45-2 Kumanosyo, Shikatsu-cho, Nishikasugai-gun, Aichi 481, Japan 2Department of Applied Biological Sciences, Nagoya University, Nagoya 46401, Japan Received June 12, 1997; Accepted September 27, 1997 We investigated the antioxidative flavonoid glycosides in the peel extract of lemon fruit (Citrus limon). Six flavanon glycosides: eriocitrin, neoeriocitrin, narirutin, naringin, hesperidin, and neohesperidin, and three flavone glycosides: diosmin, 6~-di- C-p-glucosyldiosmin (DGD), and 6- C-p-glucosyldiosmin (GD) were identified by high- performance liquid chromatography (HPLC) analysis. Their antioxidative activity was examined using a linoleic acid autoxidation system. The antioxidative activity of eriocitrin, neoeriocitrin and DGD was stronger than that of the others. Flavonoid glycosides were present primarily in the peel of lemon fruit. There was only a small difference in the content of the flavonoid glycosides of the lemon fruit juice from various sources and varieties. Lemon fruit contained abundant amounts of eriocitrin and hesperidin and also contained narirutin, diosmin, and DGD, but GD, neoeriocitrin, naringin, and neohesperidin were present only in trace amounts. The content of DGD, GD, and eriocitrin was especially abundant in lemons and limes; however, they were scarcely found in other citrus fruits. The content of flavonoid compounds in lemon juice obtained by an in-line extractor at a juice factory was more abundant than that obtained by hand-squeezing. These compounds were found to be stable even under heat treatment conditions (121'C, 15 min) in acidic solution.
    [Show full text]
  • View PDF Version
    RSC Advances View Article Online PAPER View Journal | View Issue Comparative intestinal bacteria-associated pharmacokinetics of 16 components of Shengjiang Cite this: RSC Adv.,2017,7,43621 Xiexin decoction between normal rats and rats with irinotecan hydrochloride (CPT-11)-induced gastrointestinal toxicity in vitro using salting-out sample preparation and LC-MS/MS† Huanyu Guan, ab Xiaoming Wang,a Shiping Wang,b Yang He,a Jiajing Yue,a Shanggao Liao,b Yuanda Huanga and Yue Shi*a Shengjiang Xiexin decoction (SXD) exerts protective effects against gastrointestinal injury induced by irinotecan hydrochloride (CPT-11). The intestinal bacteria-associated in vitro pharmacokinetics of 16 components of SXD in normal rats and those with CPT-11-induced gastrointestinal toxicity were Creative Commons Attribution 3.0 Unported Licence. compared in this study. A sensitive and reproducible ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of 16 components of SXD in a rat intestinal bacteria incubation system, using naringin, naringenin and tetrahydropalmatine as internal standards (ISs). The samples were prepared via salting-out assisted liquid–liquid extraction (SALLE) with NaCl to reduce matrix effects. Chromatographic separation was performed on a sub-2 mm analytical column with acetonitrile and 0.1% aqueous formic acid as mobile phase. All of the analyzed components and ISs were detected via multiple reaction monitoring (MRM) scanning with electrospray ionization. The proposed method was successfully applied for the in vitro This article is licensed under a pharmacokinetic analysis of the multiple components of a complex mixture consisting of a traditional Chinese medicine (TCM) and an intestinal bacterial incubation system.
    [Show full text]
  • Cushnie TPT, Lamb AJ. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356
    Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005. 26(5):343-356. PMID: 16323269 DOI: 10.1016/j.ijantimicag.2005.09.002 The journal article above is freely available from the publishers at: http://www.idpublications.com/journals/PDFs/IJAA/ANTAGE_MostCited_1.pdf and also... http://www.ijaaonline.com/article/S0924-8579(05)00255-4/fulltext Errata for the article (typesetting errors by Elsevier Ireland) are freely available from the publishers at: http://www.ijaaonline.com/article/S0924-8579(05)00352-3/fulltext and also... http://www.sciencedirect.com/science/article/pii/S0924857905003523 International Journal of Antimicrobial Agents 26 (2005) 343–356 Review Antimicrobial activity of flavonoids T.P. Tim Cushnie, Andrew J. Lamb ∗ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, UK Abstract Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement.
    [Show full text]