Expression and Functional Analysis of the Nobiletin Biosynthesis-Related

Total Page:16

File Type:pdf, Size:1020Kb

Expression and Functional Analysis of the Nobiletin Biosynthesis-Related www.nature.com/scientificreports OPEN Expression and functional analysis of the nobiletin biosynthesis‑related gene CitOMT in citrus fruit Mao Seoka1,4, Gang Ma1,2,4, Lancui Zhang2, Masaki Yahata1,2, Kazuki Yamawaki1,2, Toshiyuki Kan3 & Masaya Kato1,2* Nobiletin, a polymethoxy favone (PMF), is specifc to citrus and has been reported to exhibit important health-supporting properties. Nobiletin has six methoxy groups at the 3′,4′,5,6,7,8-positions, which are catalyzed by O-methyltransferases (OMTs). To date, researches on OMTs in citrus fruit are still limited. In the present study, a novel OMT gene (CitOMT) was isolated from two citrus varieties Satsuma mandarin (Citrus unshiu Marc.) and Ponkan mandarin (Citrus reticulata Blanco), and its function was characterized in vitro. The results showed that the expression of CitOMT in the favedo of Ponkan mandarin was much higher than that of Satsuma mandarin during maturation, which was consistent with the higher accumulation of nobiletin in Ponkan mandarin. In addition, functional analysis showed that the recombinant protein of CitOMT had methylation activity to transfer a methyl group to 3′-hydroxy group of favones in vitro. Because methylation at the 3′-position of favones is vital for the nobiletin biosynthesis, CitOMT may be a key gene responsible for nobiletin biosynthesis in citrus fruit. The results presented in this study will provide new strategies to enhance nobiletin accumulation and improve the nutritional qualities of citrus fruit. Flavonoids are a group of secondary metabolites that include more than 10,000 kinds of derivatives1. According to their structure, favonoids are divided into several subgroups, including favanones, favones, favonols, favanols, isofavones, and anthocyanidins2. Flavonoids are biosynthesized from p-coumaroyl-CoA and three molecules of malonyl-CoA in the phenylpropanoid synthetic pathway3. In favonoid biosynthesis, several modifcation reactions, such as hydroxylation, methylation, glycosylation, and malonylation, occur to produce individual favonoids4. Te position and the number of hydroxyl groups, which are prone to undergo methylation or gly- cosylation, vary greatly among diferent favonoids 5. Methylation of oxygen (O-methylation), nitrogen (N-methylation) and carbon (C-methylation) is a universal process critical to all organisms 6. Te biosynthesis of O-methylated favonoids is catalyzed by O-methyltransferase (OMT) using S-adenosylmethionine (SAM) as a methyl group donor to methylate the favonoid hydroxy groups7. Plant OMT genes are categorized into two types, Types I and II, based on their molecular weight, amino acid sequence and bivalent ion dependency. Type I OMTs (cafeic acid OMT: COMT) are ion-independent enzymes with a molecular weight of 38–43 kDa. COMTs act on a wide range of substrates, such as myoinositol, chal- cones, scoulerine, cafeic acid, 5-hydroxyferulic acid, cafeoyl CoA ester and 5-hydroxyferuloylester8–10. Type II OMTs (cafeoyl-CoA OMT: CCoAOMT) are ion-dependent enzymes involved in the monolignol biosynthesis with the molecular weight of 23–27 kDa. CCoAOMTs act on a narrow range of substrates, which act only on 5-hydroxyferuloyl CoA and cafeoyl CoA 11,12. It is well known that favonoids play important roles in plants, such as inforescence pigments13, signal- ing factors14, antioxidant13,15, antifungal12 and anti-insect16. In addition, favonoids are important for human health due to their various bioactivities. Recently, it was reported that favonoids possess anti-cancer17,18 and 1Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. 2Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. 3School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. 4These authors contributed equally: Mao Seoka and Gang Ma. *email: [email protected] SCIENTIFIC REPORTS | (2020) 10:15288 | https://doi.org/10.1038/s41598-020-72277-z 1 Vol.:(0123456789) www.nature.com/scientificreports/ Satsumamandarin Ponkanmandarin 80 25 9 Totalflavonoid TotalPMF Sinensetin ** 20 ** ** ) 60 6 15 ** DW ** -1 40 g ** 10 ** 3 ** 20 ** (mg 5 0 0 0 ontents 1.5 14 1.4 Tangeretin Nobiletin Heptamethoxyflavone dc 12 1.2 1.2 ** ** 10 1 ** 0.9 8 ** 0.8 ** ** * ** Flavonoi 6 0.6 0.6 ** 4 0.4 0.3 2 0.2 0 0 0 JulOct Dec JulOct Dec JulOct Dec Figure 1. Flavonoid accumulation in the favedos of Satsuma mandarin and Ponkan mandarin during fruit maturation. Te total favonoid content is the sum of identifed favonoids (narirutin, naringin, hesperidin, poncirin, isorhoifolin, rhoifolin, sinensetin, nobiletin, tangeretin and heptamethoxyfavone). Total PMF content is the sum of sinensetin, nobiletin, tangeretin and heptamethoxyfavone. Columns and bars represent the means ± SE (n = 3), respectively. Te signifcant diference between Satsuma mandarin and Ponkan mandarin is indicated by asterisks (*P < 0.05, **P < 0.01). anti-allergy19 activities in in vitro experiments. Moreover, favonoids have been found to exhibit anti-infamma- tory20,21, anti-obesity22, and neuroprotective properties23 in animal models. Nobiletin (3′,4′,5,6,7,8-hexamethoxyfavone), a polymethoxy favone (PMF), is abundant in citrus favedo (Supplementary Fig. S1)24. In recent years, the roles of nobiletin in human health have been investigated exten- sively, and it was suggested that nobiletin was benefcial to human health through its various activities, such as anti-depressant25, anti-allergy26, anti-pigmentation of skin27, and inhibition of heart failure progression28. Cur- rently, the neuroprotective efect of nobiletin has attracted increasing attentions, and nobiletin has been expected to be a potential neuroprotectant for the treatment of cerebral ischemia–reperfusion injury29, Alzheimer’s disease, and Parkinson’s disease 30. Terefore, the development of functional foods or supplements, which are rich in nobiletin, may be of great importance for human health. In nature, nobiletin specifcally accumulates in citrus fruits, and its content varies greatly among diferent citrus species. Nobiletin was markedly accumulates in species of the Acrumen and Aurantium sections, but not in the Fortunella and Poncirus species24. In particular, nobiletin is abundant in the favedos of Acrumen species, such as Dancy tangerine (C. tangerina) and Ponkan mandarin (C. reticulata). Recently, the identifcation and functional characterization of OMTs have been reported in several plants species4,31,32. However, studies on OMTs in citrus fruits are still limited, and the nobiletin biosynthetic pathway in citrus remains to be elucidated. In this study, we investigated favonoid accumulation in two citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), which accumulates a low level of nobiletin, and Ponkan mandarin (Citrus reticulata Blanco), which accumulates a high level of nobiletin. Moreover, a novel O-methyltransferase gene CitOMT was isolated and its functions were investigated in vitro. Te results showed that recombinant protein of CitOMT, which was found to perform methylation the 3′-position hydroxyl groups of favones, was a key gene for the biosynthesis of nobiletin in citrus fruit. Tis study will contribute to the cultivation of high-quality citrus fruits that are rich in nobiletin and the production of supplements and nutrient-rich health foods. Results Flavonoids accumulation in citrus favedo. In this study, the accumulation of favonoids was inves- tigated in the favedos of Satsuma mandarin ‘Miyagawa-wase’ and Ponkan mandarin ‘Ohta Ponkan’ at three development stages: immature stage (July), transition stage (October), and mature stage (December). In the favedos, four favanones (narirutin, naringin, hesperidin, and poncirin), two favones (isorhoifolin and rhoi- folin), and four PMFs (sinensetin, nobiletin, tangeretin, and heptamethoxyfavone) were detected in Satsuma mandarin and Ponkan mandarin. As shown in Fig. 1, total favonoid content decreased in Satsuma mandarin and Ponkan mandarin during fruit maturation. Te total favonoid content in Ponkan mandarin at the mature SCIENTIFIC REPORTS | (2020) 10:15288 | https://doi.org/10.1038/s41598-020-72277-z 2 Vol:.(1234567890) www.nature.com/scientificreports/ stage decreased to approximately one quarter of that at the immature stage. In Satsuma mandarin, the total fa- vonoid content at the mature stage decreased to approximately half of that at the immature stage. In addition, the favonoid composition in the favedos was diferent between Satsuma mandarin and Ponkan mandarin. During fruit maturation, Satsuma mandarin accumulated high levels of favanones, which accounted for more than 85% of the total favonoids, whereas low PMFs, which accounted for less than 6% of the total favonoid content at the mature stage. In contrast, Ponkan mandarin accumulated higher levels of PMFs than Satsuma mandarin during the maturation. At the mature stage, PMFs accounted for more than 53% of the total favonoid content in favedo of Ponkan mandarin. In Ponkan mandarin, the major PMF is nobiletin, followed by sinensetin, tangeretin, and heptamethoxyfavone. During the fruit maturation, the contents of nobiletin, tangeretin, and sinensetin in Pon- kan mandarin were much higher than those in Satsuma mandarin, whereas the content of heptamethoxyfavone in Ponkan mandarin was lower than that in Satsuma mandarin (Fig. 1). The isolation of CitOMT. In this study, we performed a Blast search in the Citrus clementina v.10 genome
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Thesis of Potentially Sweet Dihydrochalcone Glycosides
    University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the­ sis has been supplied on condition that anyone who con­ sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub­ lished without the prior written consent of the author.
    [Show full text]
  • Interpreting Sources and Endocrine Active Components of Trace Organic Contaminant Mixtures in Minnesota Lakes
    INTERPRETING SOURCES AND ENDOCRINE ACTIVE COMPONENTS OF TRACE ORGANIC CONTAMINANT MIXTURES IN MINNESOTA LAKES by Meaghan E. Guyader © Copyright by Meaghan E. Guyader, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering). Golden, Colorado Date _____________________________ Signed: _____________________________ Meaghan E. Guyader Signed: _____________________________ Dr. Christopher P. Higgins Thesis Advisor Golden, Colorado Date _____________________________ Signed: _____________________________ Dr. Terri S. Hogue Professor and Department Head Department of Civil and Environmental Engineering ii ABSTRACT On-site wastewater treatment systems (OWTSs) are a suspected source of widespread trace organic contaminant (TOrC) occurrence in Minnesota lakes. TOrCs are a diverse set of synthetic and natural chemicals regularly used as cleaning agents, personal care products, medicinal substances, herbicides and pesticides, and foods or flavorings. Wastewater streams are known to concentrate TOrC discharges to the environment, particularly accumulating these chemicals at outfalls from centralized wastewater treatment plants. Fish inhabiting these effluent dominated environments are also known to display intersex qualities. Concurrent evidence of this phenomenon, known as endocrine disruption, in Minnesota lake fish drives hypotheses that OWTSs, the primary form of wastewater treatment in shoreline residences, may contribute to TOrC occurrence and the endocrine activity in these water bodies. The causative agents specific to fish in this region remain poorly understood. The objective of this dissertation was to investigate OWTSs as sources of TOrCs in Minnesota lakes, and TOrCs as potential causative agents for endocrine disruption in resident fish.
    [Show full text]
  • L.) Leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1*
    www.nature.com/scientificreports OPEN Integrated transcriptomic and metabolomic data reveal the favonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1* Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains favonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 diferentially expressed genes and 223 favonoid metabolites were identifed in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total favonoid contents. A total of 77 unigenes encoding 15 enzymes were identifed as candidate genes involved in favonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of favonoids in the leaves of Perilla frutescens. Our results provide valuable information on the favonoid metabolites and candidate genes involved in the favonoid biosynthesis pathways in the leaves of Perilla frutescens. Perilla frutescens (L.), which is a self-compatible annual herb, belongs to the family Lamiaceae. Tis species has been widely cultivated in China, Japan, and Korea for centuries. Perilla frutescens is an important medicinal and edible plant in China with medical and nutritional uses 1. Its leaves can be utilized as a transitional medicinal herb, as a vegetable, and as a spice, and its seeds can be processed into foods and nutritional edible oils 2.
    [Show full text]
  • Combinatorial Biosynthesis of Non-Bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi
    J. Antibiot. 61(12): 709–728, 2008 THE JOURNAL OF REVIEW ARTICLE ANTIBIOTICS Combinatorial Biosynthesis of Non-bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi Received: August 1, 2008 / Accepted: October 14, 2008 © Japan Antibiotics Research Association Abstract One of the approaches of combinatorial biosynthesis is combining genes from different organisms and designing a new set of gene clusters to produce bioactive compounds, leading to diversification of both chemical and natural product libraries. This makes efficient use of the potential of the host organisms, especially when microorganisms are used. An Escherichia coli system, in which artificial biosynthetic pathways for production of plant-specific medicinal polyketides, such as flavonoids, stilbenoids, isoflavonoids, and curcuminoids, are assembled, has been designed and expressed. Starting with amino acids tyrosine and phenylalanine as substrates, this system yields naringenin, resveratrol, genistein, and curcumin, for example, all of which are beneficial to human health because of their wide variety of biological activities. Supplementation of unnatural carboxylic acids to the recombinant E. coli cells carrying the artificial pathways by precursor-directed biosynthesis results in production of unnatural compounds. Addition of decorating or modification enzymes to the artificial pathway leads to production of natural and unnatural flavonols, flavones, and methylated resveratrols. This microbial system is promising for construction of larger libraries by employing other polyketide synthases and decorating enzymes of various origins. In addition, the concept of building and expressing artificial biosynthetic pathways for production of non-bacterial and unnatural compounds in microorganisms should be successfully applied to production of not only plant-specific polyketides but also many other useful compound classes.
    [Show full text]
  • Marker Compounds in Java Tea Characterized by HP-TLC
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290095979 Marker compounds in Java tea characterized by HP-TLC Technical Report · September 2015 CITATIONS READS 0 55 2 authors: Rene De Vaumas Tiên Do Extrasynthese CAMAG 8 PUBLICATIONS 39 CITATIONS 7 PUBLICATIONS 43 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: CAMAG application note View project Edelweiss Phenylpropanoids View project All content following this page was uploaded by Rene De Vaumas on 12 January 2016. The user has requested enhancement of the downloaded file. Marker compounds in Java tea characterized by HPTLC René de Vaumas, EXTRASYNTHESE (*) and Tiên Do, CAMAG (**) Published in : CBS 115 (2015) 13-15 The subject of this article brings together two companies who have a common interest in sharing the importance of knowledge about excellent phytochemical reference materials, medicinal plants and their constituents, and the use of HPTLC as a standardized analytical method. EXTRASYNTHESE is an independent French company with a catalogue of hundreds of reference materials which can be used for regulatory and quality testing, analyzed predominantly with HPTLC. The activities of CAMAG’s laboratory in the analysis of phytochemicals are well documented in its dedication to the world-wide recognition and acceptance of HPTLC as the standard method for plant analysis. In this article the focus is on specific markers in method development for the analysis of complex plant extracts. Introduction Orthosiphon is an Indonesian medicinal plant which is widely used as an herbal tea commonly known as Java tea.
    [Show full text]
  • Identification of Compounds That Rescue Otic and Myelination
    RESEARCH ARTICLE Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant Elvira Diamantopoulou1†, Sarah Baxendale1†, Antonio de la Vega de Leo´ n2, Anzar Asad1, Celia J Holdsworth1, Leila Abbas1, Valerie J Gillet2, Giselle R Wiggin3, Tanya T Whitfield1* 1Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom; 2Information School, University of Sheffield, Sheffield, United Kingdom; 3Sosei Heptares, Cambridge, United Kingdom Abstract Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design. DOI: https://doi.org/10.7554/eLife.44889.001 *For correspondence: [email protected] †These authors contributed Introduction equally to this work Adgrg6 (Gpr126) is an adhesion (B2) class G protein-coupled receptor (aGPCR) with conserved roles in myelination of the vertebrate peripheral nervous system (PNS) (reviewed in Langenhan et al., Competing interest: See 2016; Patra et al., 2014).
    [Show full text]
  • Development and Optimization of a High Sensitivity LC-MS/MS Method for the Determination of Hesperidin and Naringenin in Rat Plasma: Pharmacokinetic Approach
    molecules Article Development and Optimization of a High Sensitivity LC-MS/MS Method for the Determination of Hesperidin and Naringenin in Rat Plasma: Pharmacokinetic Approach Jesús Alfredo Araujo-León 1,* , Rolffy Ortiz-Andrade 2, Rivelino Armando Vera-Sánchez 1, Julio Enrique Oney-Montalvo 1, Tania Isolina Coral-Martínez 1 and Zulema Cantillo-Ciau 3 1 Chromatography Laboratory, Chemistry Faculty, Autonomous University of Yucatan, Mérida 97069, Mexico; [email protected] (R.A.V.-S.); [email protected] (J.E.O.-M.); [email protected] (T.I.C.-M.) 2 Pharmacology Laboratory, Chemistry Faculty, Autonomous University of Yucatan, Mérida 97069, Mexico; rolff[email protected] 3 Medicinal Chemistry Laboratory, Chemistry Faculty, Autonomous University of Yucatan, Mérida 97069, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-999-922-5708 Academic Editor: Derek J. McPhee Received: 6 August 2020; Accepted: 12 September 2020; Published: 16 September 2020 Abstract: The purpose of this study was to develop, optimize, and fully validate a high-sensitivity methodology using UHPLC-MS/MS to simultaneously quantify hesperidin and naringenin in microsamples (100 µL) of murine plasma after intragastric administration of single pure flavonoids and a mixture. The optimization process allowed for high sensitivity with detection limits of approximately picogram order using an electrospray ionization (ESI) source in negative mode and an experiment based on multiple reaction monitoring (MRM). The validation parameters showed excellent linearity and detection limits, with a precision of less than 8% and a recovery of over 90%. This methodology was applied to compare the pharmacokinetic parameters for the administration of hesperidin and naringenin in individual form or in the form of a mixture.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Chemical Profiles and Simultaneous Quantification of Aurantii Fructus By
    molecules Article Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods Yingjie He 1,2,† ID , Zongkai Li 3,†, Wei Wang 2, Suren R. Sooranna 4 ID , Yiting Shi 2, Yun Chen 2, Changqiao Wu 2, Jianguo Zeng 1,2, Qi Tang 1,2,* and Hongqi Xie 1,2,* 1 Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; [email protected] (Y.H.); [email protected] (J.Z.) 2 National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China; [email protected] (W.W.); [email protected] (Y.S.); [email protected] (Y.C.); [email protected] (C.W.) 3 School of Medicine, Guangxi University of Science and Technology, Liuzhou 565006, China; [email protected] 4 Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, UK; [email protected] * Correspondence: [email protected] (Q.T.); [email protected] (H.X.); Fax: +86-0731-8461-5293 (H.X.) † These authors contributed equally to this work. Received: 1 August 2018; Accepted: 29 August 2018; Published: 30 August 2018 Abstract: Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract.
    [Show full text]
  • Global Transcriptome Analysis and Identification of Genes Involved In
    www.nature.com/scientificreports OPEN Global transcriptome analysis and identification of genes involved in nutrients accumulation during Received: 19 December 2016 Accepted: 31 August 2017 seed development of rice tartary Published: xx xx xxxx buckwheat (Fagopyrum Tararicum) Juan Huang1, Jiao Deng1, Taoxiong Shi1, Qijiao Chen1, Chenggang Liang1, Ziye Meng1, Liwei Zhu1, Yan Wang1, Fengli Zhao2, Shizhou Yu3 & Qingfu Chen1 Tartary buckwheat seeds are rich in various nutrients, such as storage proteins, starch, and flavonoids. To get a good knowledge of the transcriptome dynamics and gene regulatory mechanism during the process of seed development and nutrients accumulation, we performed a comprehensive global transcriptome analysis using rice tartary buckwheat seeds at different development stages, namely pre-filling stage, filling stage, and mature stage. 24 819 expressed genes, including 108 specifically expressed genes, and 11 676 differentially expressed genes (DEGs) were identified. qRT-PCR analysis was performed on 34 DEGs to validate the transcriptome data, and a good consistence was obtained. Based on their expression patterns, the identified DEGs were classified to eight clusters, and the enriched GO items in each cluster were analyzed. In addition, 633 DEGs related to plant hormones were identified. Furthermore, genes in the biosynthesis pathway of nutrients accumulation were analyzed, including 10, 20, and 23 DEGs corresponding to the biosynthesis of seed storage proteins, flavonoids, and starch, respectively. This is the first transcriptome analysis during seed development of tartary buckwheat. It would provide us a comprehensive understanding of the complex transcriptome dynamics during seed development and gene regulatory mechanism of nutrients accumulation. Seed is the primary storage organ in plants for storing nutrients such as starch, lipids, and proteins1.
    [Show full text]
  • GRAS Notice (GRN) No. 719, Orange Pomace
    GRAS Notice (GRN) No. 719 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm SAFETY EVALUATION DOSSIER SUPPORTING A GENERALLY RECOGNIZED AS SAFE (GRAS) CONCLUSION FOR ORANGE POMACE SUBMITTED BY: PepsiCo, Inc. 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Andrey Nikiforov, Ph.D. Toxicology Regulatory Services, Inc. 154 Hansen Road, Suite 201 Charlottesville, VA 22911 July 3, 2017 Table of Contents Part 1. SIGNED STATEMENTS AND CERTIFICATION ...........................................................1 A. Name and Address of Notifier .............................................................................................1 B. Name of GRAS Substance ...................................................................................................1 C. Intended Use and Consumer Exposure ................................................................................1 D. Basis for GRAS Conclusion ................................................................................................2 E. Availability of Information ..................................................................................................3 Part 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT.................................................................................................4
    [Show full text]