Hudson Bay Swamp Life, Because of Their Ability to Adapt to the Natureworks

Total Page:16

File Type:pdf, Size:1020Kb

Hudson Bay Swamp Life, Because of Their Ability to Adapt to the Natureworks 662 Hudson Bay swamp life, because of their ability to adapt to the NatureWorks. “Swamps.” New Hampshire Public changing environment,and to take advantage of a Television, 2012. http://www.nhptv.org/nature range of water levels. Fish here include largemouth works/nwep7i.htm. bass, bluegill, warmouth, red-ear sunfish, alligator Nickell, Joe. “Tracking the Swamp Monsters.” gar, freshwater drum, flathead catfish, and buffalo Committee for Skeptical Inquiry 25, no. 4 (2001). fish. Enormous quantities of crawfish thrive in Honey Island Swamp. Human Impact In 1980, President Jimmy Carter authorized the Hudson Bay 37,000-acre (15,000-hectare) Bogue Chitto National Wildlife Refuge (NWR), located north of and adja- Category: Marine and Oceanic Biomes. cent to Honey Island Swamp. The swamp is now a Geographic Location: North America. permanently protected wildlife area under the con- Summary: The second-largest bay in the world, trol of this refuge, and managed by the Louisiana Hudson Bay supports diverse cold-water coastal Department of Wildlife and Fisheries. A larger part and marine ecosystems. of the swamp is claimed as the Pearl River Wildlife Management Area (WMA). The Pearl River WMA, Named for the Dutch explorer Henry Hudson, at 35,000 acres (14,000 hectares), is comparable to Hudson Bay is the second-largest bay in the world, the Bogue Chitto NWR in size. after the Bay of Bengal. It is a marine bay and mar- Honey Island Swamp remains intact except for ginal sea in northern Canada that drains most of its waterways. The swamp is accessible only by the central area of the country as well as parts of boat or on foot; few roads exist in the area, and the upper Midwest of the United States, about 1.5 none within the borders of the swamp. As desig- million square miles (3.9 million square kilome- nated by the Nature Conservancy, Honey Island ters) in all. The Hudson connects with the North Swamp is Louisiana’s first Nature Preserve (with Atlantic Ocean via the Hudson Strait, and to the the pine forests of the northern portion of the Arctic Ocean via the Northwest Passages. area controlled by the Bogue Chitto NWR). This ecosystem provides habitat and food sources for Hydrology and Geography the surrounding plant and animal life, water pre- Many streams and rivers contribute to its waters, serves, water filtering, spawning and fishing areas, but not nearly enough to offset its brackish salin- as well as flood control from major storm surges. ity. Hudson Bay is surrounded by vast expanses of Global warming poses a real and growing threat wetlands, shrubland steppes, taiga or boreal for- to the Honey Island Swamp biome, in particular est, and tundra ecosystems. from the projected impact of sea-level rise. At the Hudson Bay is a relatively shallow saltwa- most pessimistic estimates, the swamp could remain ter body, with an average depth of 330 feet (100 substantially inundated, such that areas today fed meters). It is about 900 miles (1,450 kilometers) and refreshed by tidal flows would become entirely long north to south—including its southernmost different, permanently submerged habitats. Saltwa- lobe, James Bay—and about 650 miles (1,050 kilo- ter intrusion, and its habitat-changing dynamic, is meters) across at its widest. Total surface area is an associated impact risk that seems imminent. approximately 450,000 square miles (1.16 million square kilometers). Hudson Bay is ice-covered for Sandy Costanza half the year; ice begins to form in early November, and the whole bay has very low year-round aver- Further Reading age temperatures. The ice cover begins to melt in Keddy, Paul A. Water, Earth, Fire: Louisiana’s Natural mid-June, usually clearing from the eastern shores Heritage. Bloomington, IN: Xlibris, 2008. first. Water temperature rises to 46–48 degrees F Hudson Bay 663 (8 to 9 degrees C) on the western side of the bay intertidal, and wetland habitats here. Most such by late summer. species—at least 100—find breeding zones on While it is a saltwater or brackish body, Hud- shore. Cranes, plovers, herons, bitterns, loons, son Bay receives freshwater inflow at an annual pelicans, ducks, geese, swans, osprey, falcons, volume of some 170 cubic miles (700 cubic kilo- eagles, and owls share the Hudson. meters); even more comes from precipitation and Less is known about the prevalence and range ice melt. Consequently, and also due to its limited of marine fish species here, due to the near- hydraulic exchange with the Atlantic, the bay is absence of commercial fisheries; even traditional less salty than the ocean. subsistence fishing has been somewhat limited. Some 60 or so fish species are known in these Rich Base of Life waters, however, and many of these are adapted to Because of its vast dimensions, the Hudson Bay the relatively shallow, brackish environment here. marine ecosystem has many aquatic and coastal Of the recognized species, about two dozen stay ecozones with varied habitats that are used year- in the marine environment all their lives; half that round by Arctic and sub-Arctic species, as well as many species are marine but frequent the estu- seasonally by migratory fish, marine mammals, aries as seasonal nursery grounds; another nine and birds. The sea ice, for instance, supports the feed in the brackish coastal realm, but spawn in seals upon which polar bears depend. Millions of freshwater zones; as many as 16 freshwater spe- geese and shorebirds feed and breed in vast salt cies have evolved salinity tolerances sufficient to marshes. Productive submarine eelgrass beds spend some time here in brackish coastal reaches provide food for waterfowl migrating to and from or estuaries; and one—the Atlantic salmon—win- breeding habitat in the Arctic Islands, and shelter ters in saltwater in between the freshwater spawn for crustacean and fish populations. Numerous and final act of its anadromous life cycle. estuaries provide habitat corridors for anadro- mous fish like salmon and Arctic char, and sup- Conservation and Climate Change port beluga whales. The governance of the Hudson Bay area is largely The Hudson Bay supports great numbers of a series of compromise decisions and shared large mammals, both aquatic and terrestrial. responsibilities between federal, provincial, local, Migratory marine mammal species such as belu- and First Nations bodies. As global warming gas, narwhals, and bowhead whales frequent the proceeds—and faster here in its effects than in region as permitted by ice conditions across the many if not most other parts of the world—such northern channels. Other cetaceans, such as orca organizations will have to work more closely in and minke whales, are rarer visitors. Large con- concert to help determine the growing number centrations of up to 20,000 beluga whales are of issues. These will range from plans for hydro- found in the estuaries of the Nelson and Churchill electric dams and other water diversion schemes; Rivers in July and August. new deepwater port facilities and related marine Ringed seals, bearded seals, and harbor seals, as transport strategies; mining, agriculture, grazing, well as walruses, reside in the bay year-round, while and aquaculture rights; tourism pursuits such as harp and hooded seals visit seasonally. Subsistence hunting; real estate development; and encompass- harvesting of these marine mammals is important ing all of these areas: conservation. to the aboriginal peoples and the economy of the There has already been considerable focus on bay. Arctic foxes and polar bears reside on coasts the impact of climate change and transboundary in the summer, and on sea ice during the rest of contaminants on Hudson bay. Historic commer- the year; they, too, are hunters of the seals. cial whaling, particularly for bowheads and belu- At least 130 species of birds migrate to the Hud- gas, depleted these populations, some of which son’s waters each summer, and depart in late fall. have not entirely recovered. The steady increase in Waders, water fowl, and raptors share pelagic, regional temperatures over the last 100 years has 664 Hudson Bay Lowlands caused a lengthening of the ice-free period, and the southern shores of Hudson and James Bays. continues to jeopardize the sustainability of ice- Encompassing parts of the Canadian provinces dependent species such as polar bears and seals. of Manitoba, Ontario, and Quebec, the lowlands These ice-dependent marine mammals are vul- are along the ecotone (overlap) between the boreal nerable to both airborne contaminants and global forest to the south and Arctic tundra to the north. warming. Because these carnivorous animals are The area faces significant change, however, from high in the food chain, they accumulate contami- the effects of climate change as well as isostatic nants such as heavy metals, carcinogenic hydro- rebound (rising ground elevation) of a landscape carbons, and radioactive materials in their fatty once burdened by the fantastic weight of continen- and other tissues. tal, ice-age glaciers. Diminished sea-ice cover, decreasing flow from The location of Hudson Bay and the lowlands its tributary rivers, and increasing precipitation to its southwest and south, correspond with the are some of the long-term trends already detected approximate center of the Laurentide Ice Sheet— in the Hudson Bay; each of these vectors is pro- the massive ice load that covered North America jected to intensify, along with other effects such as during the Pleistocene period, before it retreated sea-level rise, that will have as yet undetermined and melted some 20,000 years ago. The mas- but certainly serious impacts on the habitats here. sive weight of that ice, which was as much as two miles thick, compressed the ground below, allow- Magdalena A.
Recommended publications
  • An Overview of the Hudson Bay Marine Ecosystem
    5–1 5.0 OCEANOGRAPHY Chapter Contents 5.1 CIRCULATION........................................................................................................................................................5–5 5.2 TIDES......................................................................................................................................................................5–7 5.3 WAVE CLIMATE AND STORM SURGES............................................................................................................5–10 5.4 SEA ICE ................................................................................................................................................................5–10 5.4.1 Terminology.......................................................................................................................................................5–11 5.4.2 Seasonal Changes............................................................................................................................................5–12 5.5 SALINITY, TEMPERATURE, AND MIXING .........................................................................................................5–18 5.5.1 Surface Distributions .........................................................................................................................................5–20 5.5.2 Vertical Profiles .................................................................................................................................................5–22 5.6 WATER CLARITY
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change
    Ministry of Natural Resources and Forestry Assessment of the vulnerability Science and Research of peatland carbon in the Albany Ecodistrict of the 46 Hudson Bay Lowlands, Ontario, CLIMATE CHANGE Canada to climate change RESEARCH REPORT CCRR-46 Responding to Climate Change Through Partnership Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change Jim McLaughlin, Maara Packalen, and Bharat Shrestha Forest Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry 2018 Science and Research Branch • Ministry of Natural Resources and Forestry © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Single copies of this publication are available from [email protected]. Cette publication hautement spécialisée Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change n’est disponible qu’en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère des Richesses naturelles et des Forêts au [email protected]. Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cite this report as: McLaughlin, J., M. Packalen and B. Shrestha. 2018. Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change. Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON.
    [Show full text]
  • Carbon Storage and Potential Methane Production in the Hudson Bay Lowlands Since Mid-Holocene Peat Initiation
    ARTICLE Received 28 Aug 2013 | Accepted 9 May 2014 | Published 11 Jun 2014 DOI: 10.1038/ncomms5078 Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation Maara S. Packalen1, Sarah A. Finkelstein2 & James W. McLaughlin3 Peatlands have influenced Holocene carbon (C) cycling by storing atmospheric C and releasing methane (CH4). Yet, our understanding of contributions from the world’s second largest peatland, the Hudson Bay Lowlands (HBL), Canada, to peat-climate-C-dynamics is constrained by the paucity of dated peat records and regional C-data. Here we examine HBL peatland development in relation to Holocene C-dynamics. We show that peat initiation in the HBL is tightly coupled with glacial isostatic adjustment (GIA) through most of the record, and occurred within suitable climatic conditions for peatland development. HBL peatlands initiated most intensively in the mid-Holocene, when GIA was most rapid and climate was cooler and drier. As the peat mass developed, we estimate that the HBL potentially released 1–7 Tg CH4 per year during the late Holocene. Our results indicate that the HBL currently stores a C-pool of B30 Pg C and provide support for a peatland-derived CH4 contribution to the late Holocene atmosphere. 1 Department of Geography, University of Toronto, Toronto, Ontario, Canada M5S 3G3. 2 Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1. 3 Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, Ontario, Canada P6A 2E5. Correspondence and requests for materials should be addressed to M.S.P.
    [Show full text]
  • Summary of the Hudson Bay Marine Ecosystem Overview
    i SUMMARY OF THE HUDSON BAY MARINE ECOSYSTEM OVERVIEW by D.B. STEWART and W.L. LOCKHART Arctic Biological Consultants Box 68, St. Norbert P.O. Winnipeg, Manitoba CANADA R3V 1L5 for Canada Department of Fisheries and Oceans Central and Arctic Region, Winnipeg, Manitoba R3T 2N6 Draft March 2004 ii Preface: This report was prepared for Canada Department of Fisheries and Oceans, Central And Arctic Region, Winnipeg. MB. Don Cobb and Steve Newton were the Scientific Authorities. Correct citation: Stewart, D.B., and W.L. Lockhart. 2004. Summary of the Hudson Bay Marine Ecosystem Overview. Prepared by Arctic Biological Consultants, Winnipeg, for Canada Department of Fisheries and Oceans, Winnipeg, MB. Draft vi + 66 p. iii TABLE OF CONTENTS 1.0 INTRODUCTION.........................................................................................................................1 2.0 ECOLOGICAL OVERVIEW.........................................................................................................3 2.1 GEOLOGY .....................................................................................................................4 2.2 CLIMATE........................................................................................................................6 2.3 OCEANOGRAPHY .........................................................................................................8 2.4 PLANTS .......................................................................................................................13 2.5 INVERTEBRATES AND UROCHORDATES.................................................................14
    [Show full text]
  • Who Discovered the Northwest Passage? Janice Cavell1
    ARCTIC VOL. 71, NO.3 (SEPTEMBER 2018) P.292 – 308 https://doi.org/10.14430/arctic4733 Who Discovered the Northwest Passage? Janice Cavell1 (Received 31 January 2018; accepted in revised form 1 May 2018) ABSTRACT. In 1855 a parliamentary committee concluded that Robert McClure deserved to be rewarded as the discoverer of a Northwest Passage. Since then, various writers have put forward rival claims on behalf of Sir John Franklin, John Rae, and Roald Amundsen. This article examines the process of 19th-century European exploration in the Arctic Archipelago, the definition of discovering a passage that prevailed at the time, and the arguments for and against the various contenders. It concludes that while no one explorer was “the” discoverer, McClure’s achievement deserves reconsideration. Key words: Northwest Passage; John Franklin; Robert McClure; John Rae; Roald Amundsen RÉSUMÉ. En 1855, un comité parlementaire a conclu que Robert McClure méritait de recevoir le titre de découvreur d’un passage du Nord-Ouest. Depuis lors, diverses personnes ont avancé des prétentions rivales à l’endroit de Sir John Franklin, de John Rae et de Roald Amundsen. Cet article se penche sur l’exploration européenne de l’archipel Arctique au XIXe siècle, sur la définition de la découverte d’un passage en vigueur à l’époque, de même que sur les arguments pour et contre les divers prétendants au titre. Nous concluons en affirmant que même si aucun des explorateurs n’a été « le » découvreur, les réalisations de Robert McClure méritent d’être considérées de nouveau. Mots clés : passage du Nord-Ouest; John Franklin; Robert McClure; John Rae; Roald Amundsen Traduit pour la revue Arctic par Nicole Giguère.
    [Show full text]
  • Canadian Arctic Tide Measurement Techniques and Results
    International Hydrographie Review, Monaco, LXIII (2), July 1986 CANADIAN ARCTIC TIDE MEASUREMENT TECHNIQUES AND RESULTS by B.J. TAIT, S.T. GRANT, D. St.-JACQUES and F. STEPHENSON (*) ABSTRACT About 10 years ago the Canadian Hydrographic Service recognized the need for a planned approach to completing tide and current surveys of the Canadian Arctic Archipelago in order to meet the requirements of marine shipping and construction industries as well as the needs of environmental studies related to resource development. Therefore, a program of tidal surveys was begun which has resulted in a data base of tidal records covering most of the Archipelago. In this paper the problems faced by tidal surveyors and others working in the harsh Arctic environment are described and the variety of equipment and techniques developed for short, medium and long-term deployments are reported. The tidal characteris­ tics throughout the Archipelago, determined primarily from these surveys, are briefly summarized. It was also recognized that there would be a need for real time tidal data by engineers, surveyors and mariners. Since the existing permanent tide gauges in the Arctic do not have this capability, a project was started in the early 1980’s to develop and construct a new permanent gauging system. The first of these gauges was constructed during the summer of 1985 and is described. INTRODUCTION The Canadian Arctic Archipelago shown in Figure 1 is a large group of islands north of the mainland of Canada bounded on the west by the Beaufort Sea, on the north by the Arctic Ocean and on the east by Davis Strait, Baffin Bay and Greenland and split through the middle by Parry Channel which constitutes most of the famous North West Passage.
    [Show full text]
  • Canadian-Geography-And-Mapping
    Canadian Geography and Mapping Skills Encouraging Topic Interest Keep a class collection of maps showing population, climate, topography, etc., to help students develop an understanding and appreciation of different types of maps. The Government of Canada website (http://gc.ca/aboutcanada-ausujetcanada/maps-cartes/maps-cartes-eng.html) and tourism bureaus are great sources of free maps. Encourage students to add to the class collection by bringing in a variety of maps for roads, tourist attractions, neighbourhoods, parks, amusement parks, floor plans, etc. Also have atlases and other resources handy for further study. Vocabulary List Record new and theme-related vocabulary on chart paper for students’ reference during activities. Classify the word list into categories such as nouns, verbs, adjectives, or physical features. Blackline Masters and Graphic Organizers Use the blackline masters and graphic organizers to present information, reinforce important concepts, and to extend opportunities for learning. The graphic organizers will help students focus on important ideas, or make direct comparisons. Outline Maps Use the maps found in this teacher resource to teach the names and locations of physical regions, provinces, territories, cities, physical features, and other points of interest. Encourage students to use the maps from this book and their own information reports to create an atlas of Canada. Learning Logs Keeping a learning log is an effective way for students to organize thoughts and ideas about concepts presented. Student learning logs also provide insight on what follow-up activities are needed to review and to clarify concepts learned. Learning logs can include the following types of entries: • Teacher prompts • Connections discovered • Students’ personal reflections • Labelled diagrams and pictures • Questions that arise • Definitions for new vocabulary Rubrics and Checklists Use the rubrics and checklists in this book to assess students’ learning.
    [Show full text]
  • Report from the PAME Workshop on Ecosystem Approach to Management
    Report from the PAME Workshop on Ecosystem Approach to Management 22-23 January 2011 Tromsø, Norway Table of Content BACKGROUND .................................................................................................................................... 1 WORKSHOP PROGRAM AND PARTICIPANTS .......................................................................... 1 REVIEW AND UPDATE OF THE WORKING MAP ON ARCTIC LMES .................................. 2 CAFF FOCAL MARINE AREAS ............................................................................................................ 2 LMES AND SUBDIVISION INTO SUB-AREAS OR ECO-REGIONS ............................................................. 3 STRAIGHT LINES OR BATHYMETRIC ISOLINES? ................................................................................... 4 LME BOUNDARY ISSUES ..................................................................................................................... 5 REVISED WORKING MAP OF ARCTIC LMES ........................................................................................ 9 STATUS REPORTING FOR ARCTIC LMES ................................................................................ 10 ARCTIC COUNCIL .............................................................................................................................. 11 UNITED NATIONS .............................................................................................................................. 11 ICES (INTERNATIONAL COUNCIL FOR THE EXPLORATION
    [Show full text]
  • Download Download
    DOI 10.15826/qr.2019.2.394 УДК 94(470)"1918/1922"+94(571.66+94(98)+339.56.055 FAR EASTERN PROMISES: THE FAILED EXPEDITION OF THE HUDSON’S BAY COMPANY IN KAMCHATKA AND EASTERN SIBERIA (1919–1925)* Robrecht Declercq Research Foundation Flanders (FWO), Ghent University, Ghent, Belgium This article is devoted to the attempt of the Hudson’s Bay Company (HBC) to create a new fur trading empire in Eastern Siberia and Kamchatka during and after the Civil War (1919–1925). It was one of the most controversial and substantial attempts by a foreign company to do business in Soviet Russia, and therefore is a unique case study for understanding the relationship between the young USSR and foreign business. The Kamchatka expedition is often understood as a case of the HBC’s naïve and poor judgment of the political risks involved. However, this article argues for a broader understanding of the expedition, one that takes into account specific business strategies, geo-economic Arctic developments, and the historical conditions in which trade in the area had unfolded in the decades leading up to the First World War. Concerning the last point, American traders based in Nome and Alaska had successfully traded in the Kamchatka area and set up a system in which they provided supplies to native and Russian communities in the Far East in return for furs (either by barter or for legal tender). Importantly, the system made inhabitants of the area dependent upon these supplies. The HBC’s endeavor in Kamchatka was an attempt to take over and continue these lucrative operations, but it also suited its expansionist business strategy elsewhere.
    [Show full text]
  • Water Resources
    WATER RESOURCES WHITE PAPER PREPARED FOR THE U.S. GLOBAL CHANGE RESEARCH PROGRAM NATIONAL CLIMATE ASSESSMENT MIDWEST TECHNICAL INPUT REPORT Brent Lofgren and Andrew Gronewold Great Lakes Environmental Research Laboratory Recommended Citation: Lofgren, B. and A. Gronewold, 2012: Water Resources. In: U.S. National Climate Assessment Midwest Technical Input Report. J. Winkler, J. Andresen, J. Hatfield, D. Bidwell, and D. Brown, coordinators. Available from the Great Lakes Integrated Sciences and Assessments (GLISA) Center, http://glisa.msu.edu/docs/NCA/MTIT_WaterResources.pdf. At the request of the U.S. Global Change Research Program, the Great Lakes Integrated Sciences and Assessments Center (GLISA) and the National Laboratory for Agriculture and the Environment formed a Midwest regional team to provide technical input to the National Climate Assessment (NCA). In March 2012, the team submitted their report to the NCA Development and Advisory Committee. This whitepaper is one chapter from the report, focusing on potential impacts, vulnerabilities, and adaptation options to climate variability and change for the water resources sector. U.S. National Climate Assessment: Midwest Technical Input Report: Water Resources Sector White Paper Contents Summary ...................................................................................................................................................................................................... 3 Introduction ...............................................................................................................................................................................................
    [Show full text]
  • Transportation and Transformation the Hudson's Bay Company, 1857-1885
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Quarterly Great Plains Studies, Center for Summer 1983 Transportation And Transformation The Hudson's Bay Company, 1857-1885 A. A. den Otter Memorial University of Newfoundland Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsquarterly Part of the Other International and Area Studies Commons den Otter, A. A., "Transportation And Transformation The Hudson's Bay Company, 1857-1885" (1983). Great Plains Quarterly. 1720. https://digitalcommons.unl.edu/greatplainsquarterly/1720 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Quarterly by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TRANSPORTATION AND TRANSFORMATION THE HUDSON'S BAY COMPANY, 1857 .. 1885 A. A. DEN OTTER Lansportation was a prime consideration in efficiency of its transportation system enabled the business policies of the Hudson's Bay Com­ the company to defeat all challengers, includ­ pany from its inception. Although the company ing the Montreal traders, who were absorbed in legally enjoyed the position of monopoly by 1821. Starving the competition by slashing virtue of the Royal Charter of 1670, which prices, trading liquor, and deploying its best granted to the Hudson's Bay Company the servants to critical areas were other tactics the Canadian territory called Rupert's Land, this company employed to preserve its fur empire. 1 privilege had to be defended from commercial The principal means by which the Hudson's intruders. From the earliest days the company Bay Company defended its trade monopoly, developed its own transportation network in nevertheless, was to maintain an efficient trans­ order to maintain a competitive edge over its portation system into Rupert's Land.
    [Show full text]