Jeu Complet Recto

Total Page:16

File Type:pdf, Size:1020Kb

Jeu Complet Recto $* ) & !'! # 6 0 < ! 7* )) 4 4 $* & " * : * @ 1 * * 0* 4 ? * ) ) : 7 6 ! ! * 6! * ! *" ( 7 * ! # ! 0A * ) 8 0 ! $ ! ( ) ! & 8 B/CCD;EF/ GDC/<F6H;/C # & # ) 6 ID;5D;7 ! /*I * ; 8 4<J9 ' * '! ! ' +,-."/ + # , * $ ! ! * * ! " ! " #!$!% & '#!$!%! 7** ! # $ ! - % ! * ' !'.; ) &&$ ' ' 4 ! 5 & ' ' :)) * ( '' * 7 < #% ' ' * #) * + = ,- ) . 0 ! 4 < / ) ) $ * 8 3> $ 0* 01##'2 '- 0. 3'2 0 ) 1 )' -$ . % '45' -! . '5' -! '2 ' 0 . ) * ! !" '2)' 0 0 6 * $ * ! * 7 $ '45' * 0 )) * ! / * '5' ! ? ! * ! 1 ! / 0 * ! 0 8 * ) ! )) * #!% ! 9 * 6 * )) 1 ! ! # ) / * ) 0 * ! ) @ 0 9 ! 0 0 ! " )* 6 : ) ) ! - ! . : ; ) ! 1 - 0. !! * * * / 51 PEGASI b 55 CANCRI e HD 209458 b Année de découverte : 1995 Année de découverte : 2004 Année de découverte : 1999 Constellation : Pégase Constellation : Cancer Constellation : Pégase Masse : 150 masses terrestres Masse : 9 masses terrestres Masse : 220 masses terrestres Période : 4 jours Période : 18 heures Période : 4 jours Première exoplanète découverte Cette exoplanète pourrait être Première exoplanète découverte par autour d'une étoile semblable au entièrement composée de diamant ! la méthode des transits. Soleil. HD 189733 b Tau BOOTIS b 2M1207 b Année de découverte : 2005 Année de découverte : 1996 Année de découverte : 2004 Constellation : Petit renard Constellation : Bouvier Constellation : Centaure Masse : 360 masses terrestres Masse : 1890 masses terrestres Rayon : 17 rayons terrestres Période : 2 jours Période : 3 jours Du CO a été détecté dans Première exoplanète dont Première exoplanète découverte par 2 l'atmosphère de cette exoplanète en l'atmosphère a été directement imagerie directe, grâce au Very 2008. observée, début 2012. Large Telescope installé au Chili. Bêta PICTORIS b CoRoT-9 b HR 8799 b Année de découverte : 2008 Année de découverte : 2010 Année de découverte : 2008 Constellation : Peintre Constellation : Serpent Constellation : Pégase Masse : 2500 masses terrestres Masse : 270 masses terrestres Masse : 2220 masses terrestres Période : 20 ans Période : 3 mois Période : 450 ans Cette exoplanète a montré que les Ce « Jupiter tiède » est le premier Découverte par imagerie directe, temps de formation des planètes découvert par la méthode des HR 8799 b fait partie d'un système géantes peuvent être très courts. transits. multiple d'au moins 4 exoplanètes. Upsilon ANDROMEDAE b Gliese 1214 b 16 CYGNI B b Année de découverte : 1996 Année de découverte : 2009 Année de découverte : 1996 Constellation : Andromède Constellation : Ophiuchus Constellation : Cygne Masse : 440 masses terrestres Masse : 7 masses terrestres Masse : 530 masses terrestres Période : 5 jours Période : 38 heures Période : 2 ans Une des exoplanètes du premier Peut-être la première planète océan Première exoplanète découverte système multiple découvert autour découverte, entièrement recouverte autour d'une étoile triple. d'une étoile double. d'eau. HD 80606 b Alpha CENTAURI B b WASP-18 b Année de découverte : 2001 Année de découverte : 2012 Année de découverte : 2009 Constellation : Grande ourse Constellation : Centaure Constellation : Phénix Masse : 1270 masses terrestres Masse : 1 masse terrestre Masse : 3310 masses terrestres Période : 4 mois Période : 3 jours Période : 23 heures HD 80606 b est l'exoplanète L'exoplanète la plus proche de la WASP-18 b est si proche de son possédant l'orbite la plus aplatie Terre, à « seulement » 4 années- étoile qu'une année y dure moins découverte à ce jour. lumière. d'un jour terrestre ! Un record... HD 69830 d WASP-17 b CoRoT-1 b Année de découverte : 2006 Année de découverte : 2009 Année de découverte : 2007 Constellation : Poupe Constellation : Scorpion Constellation : Licorne Masse : 18 masses terrestres Masse : 150 masses terrestres Masse : 330 masses terrestres Période : 6 mois Période : 4 jours Période : 36 heures Cette exoplanète probablement Il s'agirait de l'exoplanète la moins Comme son nom l'indique, CoRoT-1 b géante gazeuse est entourée par un dense connue à ce jour. fut la première découverte du gigantesque disque de poussières. satellite français CoRoT . HAT-P-32 b Kepler-20 e Mu ARAE b Année de découverte : 2011 Année de découverte : 2011 Année de découverte : 2000 Constellation : Andromède Constellation : Lyre Constellation : Autel Masse : 300 masses terrestres Masse : 1 masse terrestre Masse : 530 masses terrestres Période : 2 jours Période : 6 jours Période : 21 mois Avec un rayon valant 24 fois celui de Première exoplanète confirmée de Cette géante gazeuse serait située la Terre, HAT-P-32 b est la plus taille quasi-identique à celle de la dans la zone habitable de son étoile, grande exoplanète connue à ce jour. Terre. très semblable à notre Soleil. HD 40307 g OGLE-2005-BLG-390L b Kepler-16 (AB) b Année de découverte : 2012 Année de découverte : 2005 Année de découverte : 2011 Constellation : Peintre Constellation : Scorpion Constellation : Cygne Masse : 7 masses terrestres Masse : 5 masses terrestres Masse : 110 masses terrestres Période : 6 mois Période : 10 ans Période : 8 mois HD 40307 g figure en bonne place Cette super-Terre glacée a été Comme Tatooine dans Star Wars, parmi les planètes extrasolaires détectée par la méthode des cette planète tourne autour non pas potentiellement « habitables ». microlentilles gravitationnelles. d'une, mais de deux étoiles ! HD 28185 b Gliese 581 c Gliese 667C c Année de découverte : 2001 Année de découverte : 2007 Année de découverte : 2009 Constellation : Éridan Constellation : Balance Constellation : Scorpion Masse : 1810 masses terrestres Masse : 5 masses terrestres Masse : 5 masses terrestres Période : 1 an Période : 13 jours Période : 7 jours Cette géante serait idéalement Cette possible exo-Terre appartient Une des meilleures candidates à située pour que ses éventuels à l'un des systèmes planétaires les pouvoir abriter de l'eau liquide en satellites soient habitables. plus étudiés pour son habitabilité. surface. Evénement Evénement Votre dernier article a été particulièrement apprécié dans la sphère scientifique. Le module du satellite envoyé dans l'espace est De nouveaux organismes décident de subventionner défaillant. Il va falloir le réparer à distance avant de vos recherches. continuer les mesures. Vous vous rendez immédiatement dans le Les deux joueurs après vous ne peuvent laboratoire de votre choix. utiliser l'observatoire spatial. Evénement Evénement Un problème de carte de séjour oblige un de vos Vous faites partie de la liste des 20 meilleurs chercheurs étrangers à quitter l'équipe. scientifiques de l'année. C'est une grande C'est un gros handicap pour la suite des opérations. reconnaissance pour toute l'équipe. Passez votre tour. +1 point sur une de vos cartes exoplanètes. Evènement Evènement Votre sujet de recherche est déjà abordé par une Vous relevez une erreur dans les travaux d'une autre équipe. Vous cherchez donc une autre façon de équipe. Vous en faites donc part à toute la l'exploiter, mais l'idée ne vient pas comme ça. communauté scientifique. Passez votre tour. Retirez une carte exoplanète (1 ou 2 points) à n'importe quel adversaire. Evénement Evénement Votre dernière recrue est un concentré de bonnes idées et de réflexions pertinentes. Eurêka ! Vos avez trouvé le pourquoi du comment et Il faut absolument qu'elle reste au centre une année vous vous empressez de tester l'exactitude de votre de plus. découverte par de nouvelles mesures. Vous avez droit à 2 essais pour répondre au Relancez le dé. quiz. Evénement Evénement Vos travaux vous ont permis d'obtenir des fonds Le mauvais temps vient compromettre les supplémentaires. observations depuis la Terre. Il faut les remettre à plus tard. Vous vous rendez immédiatement dans le laboratoire de votre choix. Les deux joueurs après vous ne peuvent utiliser l'observatoire terrestre. Evénement Evénement Vous obtenez le prix de l'Académie des Sciences. La grippe frappe votre équipe. Vous êtes seul(e) Cela donne un coup de fouet à vos recherches. aujourd'hui au centre de recherche. Passez votre tour. +1 point sur une de vos cartes exoplanètes. Evènement Evènement Une équipe concurrente vient de publier un sujet Vous accusez une équipe concurrente de plaggia. La similaire au votre. Dommage... vérité doit être établie ! Passez votre tour. Retirez une carte exoplanète (1 ou 2 points) à n'importe quel adversaire. Evénement Evénement Un nouveau thésard vient d'arriver dans votre Un chercheur étranger vient d'arriver au centre de centre. Dynamique et sérieux, il apporte une aide recherche. précieuse. Des mains et un cerveau en plus ne feront
Recommended publications
  • Identify the Following
    1. This planet appears to be lying on its side. A. Jupiter B. Saturn C. Neptune D. Uranus E. none of these 2. This planet is the hottest on the solar system. This is due to the swirling clouds pf sulfur and sulfuric acid that obscure its surface making its atmosphere heavy and dense. A. Mercury B. Venus C. Earth D. Mars E. none of these 3. The only asteroid known to have a satellite. A. Ceres B. Eris C. Makemake D. Ida E. none of these 4. It is an anticyclonic storm on Jupiter that has been existing for 180 years and it is expected to last for another 345 years. A. GDS B. GBS C. GSS D. SSS E. none of these 5. It is the second largest planet and it has spectacular rings that can be seen on Earth by telescope. A. Jupiter B. Saturn C. Neptune D. Uranus E. none of these 6. It divides the planets into Inner Planets and Outer Planets. A. Kuiper Belt B. Asteroid Belt C. Oort Cloud D. heliopause E. none of these 7. Pluto is now considered a ____. A. Giant Planet B. Dwarf Planet C. Elf Planet D. Little Solar System E. none of these 8. It is made up of many small comets orbiting around the sun. It is the area wherein scientists believed Pluto to be a part of. A. Kuiper Belt B. Asteroid Belt C. Oort Cloud D. heliopause E. none of these 9. The belt in number 8 was discovered by ___. A. Nicolaus Copernicus B.
    [Show full text]
  • Exodata: a Python Package to Handle Large Exoplanet Catalogue Data
    ExoData: A Python package to handle large exoplanet catalogue data Ryan Varley Department of Physics & Astronomy, University College London 132 Hampstead Road, London, NW1 2PS, United Kingdom [email protected] Abstract Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in an arti- cles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Cata- logue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary etc) from which common orbital and system equations can be calculated and measured parame- ters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets are possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-1-107-09161-0 - Planetary Sciences: Updated Second Edition Imke de Pater and Jack J. Lissauer Index More information Index D region, 263 Airy hypothesis, 252–253, 280 I/F,59 Aitken basin, 266 β-effect, 109 albedo γ -ray fluorescence, 571 Bond albedo, 58, 77, 144 3He, 386 geometric albedo, 59 ν6 resonance, 581 giant planets, 77 monochromatic albedo, 58 ’a’a, 168f, 168 terrestrial panets, 77–78 ablation, 184 albite, 162, 239 absorption, 67 Aleutan islands, 167 absorption coefficient, 67, 71 Alfven´ velocity; see velocity absorption line, 85 Alfven´ waves, 291, 306 accretion zone, 534 ALH84001, 342 achondrites, 337, 339, 358 allotropes, 217 eucrite, 339 α decay, 352, 365 HED, 358 Amalthea, 227f, 455, 484 acid rain, 194 amorphous ice, 412, 438 activation energy, 127 Ampere’s law, 290 active region, 283 amphibole, 154 active sector, 317, 319 andesite, 156f Adams–Williams equation, 261, 281 angle of repose, 163 adaptive optics (AO), 104, 194, 494, 568f, 568–569 angular momentum, 521 adiabatic invariants anhydrous rock, 550 first invariant, 297 anion, 153 second invariant, 297–298 anomalous cosmic rays, 311f, 312 third invariant, 298 anorthite, 162, 197 adiabatic lapse rate, 63–64, 80–81, 149 anorthosite, 197 dry, 64, 80 ansa, 459 giant planets, 77 antapex, 189 superadiabatic, 64, 70, 111 Antarctica, 214 wet, 101–102 anticyclone, 111f, 112 Adrastea, 225, 227f, 454f, 484 antipode, 183, 197, 316 advection, 61 apex, 189 advective derivative, 108 Apollo program, 16 aeolian processes, 173 Apollo spacecraft, 95, 185, 196–197, 267f, 316, 341 aerodynamic drag, 49, 55, 102, 347–348, 416 apparition, 407 aerogel, 432f, 432 aqueous alteration, 401 AGB star (asymptotic giant branch), 527 arachnoid, 201, 202f agregates, 528 Archimedean spiral, 287f airglow, 135 Archimedes principle, 251 625 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09161-0 - Planetary Sciences: Updated Second Edition Imke de Pater and Jack J.
    [Show full text]
  • Les Exoplanètes
    LESLES EXOPLANEXOPLANÈÈTESTES Introduction Les différentes méthodes de détection Le télescope spatial Kepler Résultats et typologie GAP 47 • Olivier Sabbagh • Avril 2016 Les exoplanètes I Introduction Une exoplanète, ou planète extrasolaire, est une planète située en dehors du système solaire, c’est à dire une planète qui est en orbite autour d’une étoile autre que notre Soleil. L'existence de planètes situées en dehors du Système solaire est évoquée dès le XVIe siècle par Giordano Bruno. Ce moine novateur et provocateur du XVI° siècle a eu des intuitions foudroyantes qu’il assénait avec force et conviction, en opposition farouche contre le dogme du géocentrisme qui prévalait depuis Aristote et Ptolémée. Son entêtement lui vaudra le bûcher pour hérésie en 1600. Voir le paragraphe qui lui est consacré dans notre document « une histoire de l’astronomie ». Dès 1584 (Le Banquet des cendres), Bruno adhère, contre la cosmologie d'Aristote, à la cosmologie de Copernic (1543), à l'héliocentrisme : double mouvement des planètes sur elles-mêmes et autour du Soleil, au centre. Mais Bruno va plus loin : il veut renoncer à l'idée de centre : « Il n'y a aucun astre au milieu de l'univers, parce que celui-ci s'étend également dans toutes ses directions ». Chaque étoile est un soleil semblable au nôtre, et autour de chacune d'elles tournent d'autres planètes, invisibles à nos yeux, mais qui existent. « Il est donc d'innombrables soleils et un nombre infini de terres tournant autour de ces soleils, à l'instar des sept « terres » [la Terre, la Lune, les cinq planètes alors connues : Mercure, Vénus, Mars, Jupiter, Saturne] que nous voyons tourner autour du Soleil qui nous est proche ».
    [Show full text]
  • Astronomical Distances
    The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3.
    [Show full text]
  • [Final] Origin of Oceans and Waterworlds
    Origin of oceans and waterworlds Boris Pestoni, Vytenis Šumskas University of Zürich AST 202 The Universe: Contents, Origin, Evolution and Future March 22, 2016 S Contents S Origin of water on Earth S How did the oceans form? S States of matter of water S Is water a peculiarity of the Earth? S Extreme worlds: ice planets and ocean planets Water on Earth S ~71% of the Earth’s surface is covered with water. Water on Earth S Only 0,02% - 0,06% of our planet’s total mass is water. S Nonetheless, Earth is called “The blue planet”. Oceans on Earth S The age of Earth’s oceans is estimated to be nearly the same as the age of Earth: 4 - 4,4 billion years. Oceans on Earth S The planet cooled. S It became covered in gas. Oceans on Earth S The longest rain in the history of Earth. S Eventually water gathered in the deepest parts of surface. Other sources of water S ≥50% of Earth’s water came from outer space. Water in asteroids S How do we even know it? States of matter of water Water in the universe Until now we have found water in the following objects / regions: Out of Proto_ Rings the planetary disk Asteroid Comets of Mars Moon Earth Milky of the Milky belt Saturn Way Way Water of ✓ ✓ ✓ ✓ crystallization Water ice ✓ ✓ ✓ ✓ ✓ ✓ ✓ Liquid water ✓ ✓ ✓ ✓ Steam ✓ ✓ ✓ ✓ ✓ ✓ Supercritical ✓ water Overview of the Solar System Imbalance of water on planets S The reason that there is clearly more liquid water on the Earth than on the other rocky planets of the Solar System is, until now, not completely understood.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Discoveries by Astronomer Thomas Scott Zolotor
    Discoveries by Astronomer Thomas Scott Zolotor July 30, 2013 at 12:38pm https://www.facebook.com/notes/tom-freethesouls-zolotor/discoveries-by-astronomer-thomas-scott-z olotor/10151738488524144 THOMAS ZOLOTOR IS A FINANCIAL POLICE® DEPUTY AGENT HE ALSO A SEA CAPTAIN AND ORDINATED MINISTER AS WELL AS AN ASTRONOMER. HE SOMETIMES GOES BY CAPTAIN FREE THE SOULS. Astronomer, Thomas Scott Zolotor, is helping to map and study parts of Mars, Mercury, Vesta and the Moon. Thomas is also studying how galaxies form and has classified and discovered never before seen galaxies. He is searching for gravitational waves around pulsars, and has produced a better understanding of how the Milky Way formed. Thomas is seeking to better define dark matter as well as how the universe formed after the big bang. In his studies, Thomas searches for planets around other star systems. In 1991, Thomas found an asteroid. He has discovered several asteroids and stellar clusters to date.Captain Thomas Zolotor took part in the Andromeda Project which produce the largest catalog of star clusters known in any spiral galaxy. He was one of the very first to find undiscovered stellar clusters in this program. He found a stellar cluster that looks like the letter"N" and another that looks like the number 2. He has discovered many more stellar clusters in the galaxy Andromeda. He has published numerous theories about the universe that are supported by recent research. 1. Captain Zolotor discovered never before seen galaxies. 2. Captain Zolotor discovered never before seen stellar clusters and was involved in helping to make the largest ever catalog of stellar clusters.
    [Show full text]
  • The 10 Parsec Sample in the Gaia Era?,?? C
    A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets.
    [Show full text]
  • Part 1: the 1.7 and 3.9 Earth Radii Rule
    Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is What are exoplanets made of? Part 1: The 1.7 and 3.9 earth Radii rule. As of August 2016, the current count of confirmed exoplanets is up around 3,400 in 2,617 systems – with 590 of those systems confirmed to be multiplanet systems. And the latest thinking is that if you want to understand what exoplanets are made of you need to appreciate the physical limits of planet-hood, which are defined by the boundaries of 1.7 and 3.9 Earth radii . Consider that the make-up of an exoplanet is largely determined by the elemental make up of its protoplanetary disk. While most material in the Universe is hydrogen and helium – these are both tenuous gases. In order to generate enough gravity to hang on to them, you need a lot of mass to start with. So, if you’re Earth, or anything up to 1.7 times the radius of Earth – you’ve got no hope of hanging onto more than a few traces of elemental hydrogen and helium. Indeed, any exoplanet that’s less than 1.7 Earth radii has to be primarily composed of non-volatiles – that is, things that don’t evaporate or blow away easily – to have any chance of gravitationally holding together. A non-volatile exoplanet might be made of rock – which for our Solar System is a primarily silicon/oxygen based mineral matrix, but as we’ll hear, small sub-1.7 Earth radii exoplanets could be made of a whole range of other non-volatile materials.
    [Show full text]
  • Breakthrough Starshot Plans Robotic Craft to Proxima Centauri P
    HOW TO VIEW THIS MONTH’S LUNAR ECLIPSE p. 46 MAY 2021 The world’s best-selling astronomy magazine Breakthrough Starshot plans robotic craft to Proxima Centauri p. 16 Explore gems of the deep southern sky p. 48 www.Astronomy.com PLUS V BONUS o l . 4 9 p. 40 ONLINE • See Apollo 14 in 3D I s s u CONTENT e p. 54 Celestron’s StarSense scope reviewed 5 CODE p. 4 Bob Berman on astrophysical food fights p. 13 Breakthrough A voyage to the stars Using laser-propelled lightsails, tiny spacecraft could venture to the Sun’s nearest neighbor in just a few decades. BY JAKE PARKS n Nov. 6, 2018, as millions of telescope at Haleakalā Observatory in Americans cast their votes in a Hawaii. But it wasn’t until he began explor- hotly contested midterm elec- ing what he himself describes in his book tion, astrophysicist Avi Loeb as “an exotic hypothesis, without question” sat in his office surrounded that he began to take it seriously — if only Oby four television crews. Loeb, as a thought experiment. chair of Harvard University’s Department He drew his ‘Oumuamua hypothesis of Astronomy and author of the new from what was fresh in his mind. At that book Extraterrestrial (Houghton Mifflin point, Loeb had spent the previous few years Harcourt, 2021), was not being targeted working with some of the world’s brightest for his political insight. and most ambitious people quiry “A tantalizing, probing in fe.” he possibilities of alien li into t views Instead, the media atten- — Kirkus Re to develop an audacious e tion was due to his recent x interstellar mission that t eye-catching paper r would use lightsails to a t exploring whether the e venture to a nearby star.
    [Show full text]
  • De Natura Rerum: Exoplanets and Exoearths Pierre Léna Que L’Homme Contemple La Nature Dans Sa Haute Et Pleine Majesté… Que La Terre Lui Paraisse Comme Un Point
    De Natura Rerum: Exoplanets and ExoEarths Pierre Léna Que l’homme contemple la nature dans sa haute et pleine majesté… que la Terre lui paraisse comme un point. Blaise Pascal (1623-1662) Pensées Introduction At the 2004 Plenary Session of the Pontifical Academy of Sciences on Paths of Discovery, I presented a paper with the title The case of exoplanets [Léna 2005]. It was then close to the 10th anniversary of the discovery of the first exoplanet in 1995. There is no point in repeating here this paper. But in the last decade, the discoveries on this subject have been so considerable that, the 20th anniversary coming, it is worth addressing the topic again. During the first decade 1995-2004, only 133 exoplanets had been discovered by an indirect method, and the first direct image of an exoplanet was not even confirmed. Today in our Galaxy containing the Earth, statistics begin to indicate that on average every star has a planet, which means over 100 billions of exoplanets for this galaxy alone, of which nearly 2000 are now identified and more or less characterized. How does the subject of exoplanets relate with the Evolving concepts of nature, the title of this Plenary Session? In the 2005 paper, I recalled the long history of a quest which began metaphysically with Democritus, was disputed theologically during the Middle Age, provided phantasies to poets and writers, until it emerged as a scientific problem, to be addressed with the investigative methods of astronomy during the 19th century. Along this path, Giordano Bruno, who expressed ideas close to Lucretius’s ones, was condemned to the fire for multiple reasons, including this one.
    [Show full text]