Storage and Use of Glycogen by Juvenile Carcinonemertes Errans

Total Page:16

File Type:pdf, Size:1020Kb

Storage and Use of Glycogen by Juvenile Carcinonemertes Errans Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1980 Storage and use of glycogen by juvenile Carcinonemertes errans D. Mitchell Wolgamott Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Developmental Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Wolgamott, D. Mitchell, "Storage and use of glycogen by juvenile Carcinonemertes errans" (1980). Dissertations and Theses. Paper 2970. https://doi.org/10.15760/etd.2966 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF D. Mitchell Wolgamott for the Master of Science in Biology presented February 29, 1980. Title: Storage and Use of Glycogen by Juvenile Carcinonemertes er rans. APPROVED BY MEMBERS OF THE THESIS COMMITTEE: David T. Clark, Chairperson Juvenile ~ errans do not feed on particulate matter and· yet they can survive, apparently unchanged, for several months before maturing into the adult stage which feeds on the eggs of Cancer magister. The significance of glycogen as an energy source for maintenance of the juvenile form was investigated. Glycogen was shown to be present and to be confined largely to the columnar cells of the gastrodermis. When animals were 2 maintained 30 days in filtered sea water at 10 C there was no detecta- ble change in .glycogen content on a per worm basis. But when the oxy- gen tension of the environment was lowered to zero over .an eight hour period, the glycogen content of the worms increased 60% in the first four hours. Worms were shown to be capable of surviving at least 21 days of complete anaerobiosis. Iodoacetate at a concentration of O.SmM greatly reduced tolerance to anoxia. The findings of this study indicate that glycogen is not essen- tial to the aerobic maintenance of the worm. However, if the oxygen tension is lowered, juvenile £!.. errans can rapidly increase their glycogen content. They can then survive long periods of anoxia by relying on anaerobic glycolysis.as an.energy source. STORAGE AND USE OF GLYCOGEN BY JUVENILE CARCINONEMERTES ER.RANS by D. Mitchell Wolgamott A thesis submitted in partial fulfillment .of the requirements for the degree of MASTER OF SCIENCE in BIOLOGY Portland State University 1980 TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH: The members of the Committee approve the thesis of D. Mitchell Wolgamott presented February 29, 1980. David T. Clark, Chairperson Leonard Simpson Stanley s.~Hillman APPROVED: w. Herman Stanley Studies and Research ACKNOWLEDGMENTS I would like to extend thanks to Dr. David Clark, my advisor, and the other members of-my Committee for their help and criticism; Dr. Paul Rudy, Director of the Oregon Institute of Marine Biology, for introducing me to Carcinonemertes and for allowing me to work at OIMB; Drs. Robert Terwilliger and Charles Holiday for their enthusiasm and for allowing me to collect worms from crabs they had collected for other purposes at OIMB. Thanks also to Sue E. Orlaske for her criticism and moral support when it was severely needed. TABLE OF CONTENTS PAGE ACKNOWLEDGMENTS • iii LIST OF TABLES v LIST OF FIGURES • vi INTRODUCTION l LITERATURE REVIEW • 3 ~TERIALS AND METHODS 10 Localization of Glycogen 12 Quantitative Determination of Glycogen 13 Determination of Effects of Metabolic Inhibitors 16 RESULTS • • • • • • 19 Localizatio~ of Glycogen 19 Quantitative Determination of Glycogen i·e Effects of Metabolic Inhibitors 22 DISCUSSION AND CONCLUSIONS • • • • • • a • • • • • • 28 LITERATURE CITED . 34 APPENDIX 37 LIST OF TABLES TABLE PAGE I Measurements <µm} of Component Parts of Proboscis Armature of various Species of Carcinonemertes 11 LIST OF FIGURES FIGURE PAGE 1. Standard Curve1 Relation of NADPH Fluorescence and Glycogen Concentration • • 15 2. Tissue Sections of Juvenile C. errans Stained by the PAS Method •• . 20 3. Seasonal Variation in Glycogen Content of Juvenile C. errans . 21 4. Effect of Decreasing Environmental Oxygen on Glycogen Content of Juvenile c. errans 23 5. Glycogen Content of Juvenile f.!_ errans During Long Term Anaerobic Incubation 23 6. Percent ~urvival of Juvenile ~ errans Incubated with Iodoacetate in Anaerobic and Aerobic Conditions 24 7. Effect of Iodoacetate on Oxygen Consumption by Juvenile ~ errans • .• • • • • 26 8. Effect of Sodium Cyanide on Oxygen Consumption by Juvenile c. errans • 27 INTRODUCTION The Rhynchocoelan genus Carcinonemertes Coe, 1902, consists of 1 five species which live symbiotically with various species of marine crabs where the adult worms feed on the host eggs. Among those crab species infested by the worms are the economically important Cancer magister Dana, 1852, and Callinectes sapidus Rathbun, 1906. Recently, there have been indications that the newly described species, Carcinone- mertes errans Wickham, 1978, may play a role in the declining crab fishery along the coast of Northern California (Wickham 1979a). Host eggs appear to be the only food of adult Carcinonemertes (Kuris 1978, Humes 1942). Juveniles are found on both male and female crabs where they apparently do ·not feed on particulate matter. For this reason they are considered to be phoretic on the host (Kuris 1978). The energy source for maintenance of the juvenile form, until it is stimulated to mature and begin feeding (when the host undergoes ovaposition), is not known. The stimulus for maturation also is not understood. This study was undertaken to evaluate the significance of glyco- gen as an energy source for maintenance of juvenile Carcinonemertes. To do this, the glycogen content of juvenile worms.was localized and quantified. The effects of aerobic and anaerobic maintenance on glycogen content of the worms was determined. And the effects, on 1 symbiosis, as used in this Thesis, refers to any close asso­ ciation between organisms .of different species (Pennak 1964). 2 the intact animal, of the metabolic inhibitors iodoacetate (an inhibi- tor of glycolysis) and sodium cyanide {an inhipitor of electron trans- port) were determined. I lt i l I LITERATURE REVIEW The genus Carcinonemertes was established by Wesley Coe who described its members as "parasitic nemerteans living on various species of Crustacea" (Coe 1902). This is the only genus included in the family Carcinonemertidae. There are currently five recognized species, one of which is divided into varieties: ~ carcinophila var. carcinophila (Kolliker 1845) Coe, 1902, from the South Atlantic Coast of North America, Italy, Belgium, and France; C. Carcinophila var. irnrninuta, Humes, 1942, from the Atlantic Coast of North America; f.!_ epialti Coe, 1902, from the Pacific Coast of North America; .£:. mitsukurii Takakura, 1910, from Japan; f!_ coei Humes, 1942, from the East Coast of Africa; and c. errantia Wickham, 1978, from the Pacific Coast of North America. Coe· (1902) felt that these worms are true parasites feeding on hemolymph from the gills of male and non-ovigerous female hosts and feeding on crab embryos when the host is an ovigerous female. However, Humes (1942) could find no evidence that the worms feed on hemolymph or damage the gills in any other way (except possibly by impeding oxygen exchange when the infestation is severe}. He referred to the worms as ectohabitants rather than parasites. He also implied that crab embryos are the only source of nourishment for the worms. Scrocco and Fabianek (1970) also found no evidence that the worms feed on hemolyrnph or any other tissue of the host. Kuris (1978) has referred to Carcinonemertes as being egg predators. 4 Regardless of whether the species of Carcinonemertes are consi­ dered to be commensals or true parasites, they d~ display several structural and behavioral modifications related to their symbiotic mode of life. These include: reduction in number of eyes as compared to many free~living nemertean species, increase in number of gonads, reduced proboscis, absence of cephalic grooves or other cerebral sense organs, excessive development of cephalic glands, positive photaxis of the larvae (Humes 1942, Gibson 1972). The juvenile or non-sexual phase of Carcinonemertes is found encysted in mucoid capsules in the branchial chamber, on the gills, or on the exoskeleton of the host crab (Humes 1942, Kuris 1978) with the possible exception of f..=...errans which, according to Wickham (1978a), does not build mucous sheaths and is never found on the gills. The worms begin their feeding, growing, sexual phase upon ·receiving some signal.at the time of extrusion of the egg mass by a female crab. At ~his time the worms leave their capsules and migrate to the abdomen of the host where they take up residence in or near the egg mass. Here they begin a period of rapid growth and maturation. When mucous tubes are constructed, individuals usually inhabit separate tubes, but occasionally a male and female are found together in the same tubes. After mating, the femal~ deposits her eggs in the closed end of her mucous tube. The eggs hatch as free-swimming larvae which eventually escape from the mucous tube. Roe (1979) has shown for c. eoialti that not all larvae from a particular tube hatch at once. Instead, they hatch a few at a time over a period of several days. The larvae may represent a dispersal stage which must settle on the 5 same or on a new host to survive. Once a suitable substrate is located, the larvae presumably lose their swimming cilia and become juvenile worms. Host-to-host transmission of juvenile worms has been shown to occur under experimental conditions (Humes 1942, Kuris 1978). Crabs of both sexes become.infested with juveniles, but the life cycle can only be completed on an ovigerous female. Hopkins (1947) has reported that the spawning history of female Callinectes sapidus can be determined by the presence or absence of mature Carcinonemertes in the gills.
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ovicides Paralithodis (Nemertea, Carcinonemertidae), a New Species
    A peer-reviewed open-access journal ZooKeys 258: 1–15 (2013)Ovicides paralithodis (Nemertea, Carcinonemertidae), a new species... 1 doi: 10.3897/zookeys.258.4260 RESEARCH artICLE www.zookeys.org Launched to accelerate biodiversity research Ovicides paralithodis (Nemertea, Carcinonemertidae), a new species of symbiotic egg predator of the red king crab Paralithodes camtschaticus (Tilesius, 1815) (Decapoda, Anomura) Hiroshi Kajihara1,†, Armand M. Kuris2,‡ 1 Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan 2 Marine Science Institute & Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA † urn:lsid:zoobank.org:author:D43FC916-850B-4F35-A78C-C2116447C606 ‡ urn:lsid:zoobank.org:author:DEF44B3D-F5AF-47DC-8F4A-CF4EB3F54D4C Corresponding author: Hiroshi Kajihara ([email protected]) Academic editor: Jon Norenburg | Received 7 November 2012 | Accepted 7 January 2013 | Published 14 January 2013 urn:lsid:zoobank.org:pub:B0271AE6-3E1D-4C76-81FD-54242FAE4A5D Citation: Kajihara H, Kuris AM (2013) Ovicides paralithodis (Nemertea, Carcinonemertidae), a new species of symbiotic egg predator of the red king crab Paralithodes camtschaticus (Tilesius, 1815) (Decapoda, Anomura). ZooKeys 258: 1–15. doi: 10.3897/zookeys.258.4260 Abstract Ovicides paralithodis sp. n. is described from the egg mass of the red king crab Paralithodes camtschaticus (Tilesius, 1815) from the Sea of Okhotsk, off Hokkaido, Japan, and Alaska, USA. Among four congeners, O. paralithodis can be distinguished from O. julieae Shields, 2001 and O. davidi Shields and Segonzac, 2007 by having no eyes; from O. jonesi Shields and Segonzac, 2007 by the presence of basophilic, vacu- olated glandular lobes in the precerebral region; and from O.
    [Show full text]
  • Oxygen, Ecology, and the Cambrian Radiation of Animals
    Oxygen, Ecology, and the Cambrian Radiation of Animals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sperling, Erik A., Christina A. Frieder, Akkur V. Raman, Peter R. Girguis, Lisa A. Levin, and Andrew H. Knoll. 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences 110, no. 33: 13446–13451. Published Version doi:10.1073/pnas.1312778110 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12336338 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Oxygen, ecology, and the Cambrian radiation of animals Erik A. Sperlinga,1, Christina A. Friederb, Akkur V. Ramanc, Peter R. Girguisd, Lisa A. Levinb, a,d, 2 Andrew H. Knoll Affiliations: a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138 b Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093- 0218 c Marine Biological Laboratory, Department of Zoology, Andhra University, Waltair, Visakhapatnam – 530003 d Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138 1 Correspondence to: [email protected] 2 Correspondence to: [email protected] PHYSICAL SCIENCES: Earth, Atmospheric and Planetary Sciences BIOLOGICAL SCIENCES: Evolution Abstract: 154 words Main Text: 2,746 words Number of Figures: 2 Number of Tables: 1 Running Title: Oxygen, ecology, and the Cambrian radiation Keywords: oxygen, ecology, predation, Cambrian radiation The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity.
    [Show full text]
  • Larval Biology and Estuarine Ecology of the Nemertean Egg
    LARVAL BIOLOGY AND ESTUARINE ECOLOGY OF THE NEMERTEAN EGG PREDATOR CARCINONEMERTES ERRANS ON THE DUNGENESS CRAB, CANCER MAGISTER by PAUL HAYVEN DUNN A DISSERTATION Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2011 DISSERTATION APPROVAL PAGE Student: Paul Hayven Dunn Title: Larval Biology and Estuarine Ecology of the Nemertean Egg Predator Carcinonemertes errans on the Dungeness Crab, Cancer magister This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: Brendan Bohannan Chairperson Craig Young Advisor Svetlana Maslakova Member Alan Shanks Member William Orr Outside Member and Kimberly Andrews Espy Vice President for Research & Innovation/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded September 2011 ii © 2011 Paul Hayven Dunn iii DISSERTATION ABSTRACT Paul Hayven Dunn Doctor of Philosophy Department of Biology September 2011 Title: Larval Biology and Estuarine Ecology of the Nemertean Egg Predator Carcinonemertes errans on the Dungeness Crab, Cancer magister Approved: _______________________________________________ Craig M. Young The nemertean worm Carcinonemertes errans is an egg predator on the Dungeness crab, Cancer magister, an important fishery species along the west coast of North America. This study examined the estuarine distribution and larval biology of C. errans. Parasite prevalence and mean intensity of C. errans infecting C. magister varied along an estuarine gradient in the Coos Bay, Oregon. Crabs nearest the ocean carried the heaviest parasite loads, and larger crabs were more heavily infected with worms.
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Biodiversità Ed Evoluzione
    Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE Ciclo XXIII Settore/i scientifico-disciplinare/i di afferenza: BIO - 05 A MOLECULAR PHYLOGENY OF BIVALVE MOLLUSKS: ANCIENT RADIATIONS AND DIVERGENCES AS REVEALED BY MITOCHONDRIAL GENES Presentata da: Dr Federico Plazzi Coordinatore Dottorato Relatore Prof. Barbara Mantovani Dr Marco Passamonti Esame finale anno 2011 of all marine animals, the bivalve molluscs are the most perfectly adapted for life within soft substrata of sand and mud. Sir Charles Maurice Yonge INDEX p. 1..... FOREWORD p. 2..... Plan of the Thesis p. 3..... CHAPTER 1 – INTRODUCTION p. 3..... 1.1. BIVALVE MOLLUSKS: ZOOLOGY, PHYLOGENY, AND BEYOND p. 3..... The phylum Mollusca p. 4..... A survey of class Bivalvia p. 7..... The Opponobranchia: true ctenidia for a truly vexed issue p. 9..... The Autobranchia: between tenets and question marks p. 13..... Doubly Uniparental Inheritance p. 13..... The choice of the “right” molecular marker in bivalve phylogenetics p. 17..... 1.2. MOLECULAR EVOLUTION MODELS, MULTIGENE BAYESIAN ANALYSIS, AND PARTITION CHOICE p. 23..... CHAPTER 2 – TOWARDS A MOLECULAR PHYLOGENY OF MOLLUSKS: BIVALVES’ EARLY EVOLUTION AS REVEALED BY MITOCHONDRIAL GENES. p. 23..... 2.1. INTRODUCTION p. 28..... 2.2. MATERIALS AND METHODS p. 28..... Specimens’ collection and DNA extraction p. 30..... PCR amplification, cloning, and sequencing p. 30..... Sequence alignment p. 32..... Phylogenetic analyses p. 37..... Taxon sampling p. 39..... Dating p. 43..... 2.3. RESULTS p. 43..... Obtained sequences i p. 44..... Sequence analyses p. 45..... Taxon sampling p. 45..... Maximum Likelihood p. 47..... Bayesian Analyses p. 50..... Dating the tree p.
    [Show full text]
  • Phylum Nemertea
    Biol. Lett. (2007) 3, 570–573 annelids, molluscs and entoprocts (plus some other doi:10.1098/rsbl.2007.0306 phyla varying between analyses). Published online 7 August 2007 Other Annulonemertes (supposedly different) species Phylogeny are reported in the literature (Norenburg 1988; Chernyshev & Minichev 2004) but A. minusculus is the only named species in the genus. There are other Annulonemertes (phylum nemertean species described with similar constrictions (notably Arenonemertes minutus, Friedrich 1949; Nemertea): when segments Nemertellina yamaokai, Kajihara et al. 2000), but neither species have these repeated constrictions do not count observed in Annulonemertes. The species is referred to as ‘segmented’ in zoological textbooks and thus enig- Per Sundberg* and Malin Strand matic from a phylogenetic point of view (e.g. Brusca & Department of Zoology, Go¨teborg University, PO Box 463, Brusca 2003). Its segmentation has also been 405 30 Go¨teborg, Sweden *Author for correspondence ([email protected]). discussed in the context of whether the last common ancestor of bilaterian animals was segmented We estimated the phylogenetic position of the (Balavoine & Adouette 2003). Giribet (2003) dis- pseudosegmented ribbon worm Annulonemertes minusculus to test proposed evolutionary hypo- cussed the morphological characters supporting the theses to explain these body constrictions. The Articulata versus Ecdyozoa metazoan phylogeny analysis is based on 18S rDNA sequences and hypotheses and refers to Annulonemertes as segmented shows that the species belongs to an apomorphic but at the same time conclude that this kind of serial clade of hoplonemertean species. The segmenta- repetition of structures is found in many phyla and tion has no phylogenetic bearing as previously do not really count as true segmentation (see also discussed, but is a derived character probably Scmidt-Rasea et al.
    [Show full text]