Systematic Review of the Mastacembelidae Or Spiny Eels of Burma and Thailand, with Description of Two New Species of Macrognathus

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Review of the Mastacembelidae Or Spiny Eels of Burma and Thailand, with Description of Two New Species of Macrognathus Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol. 33, No. 2 1986 33巻2号1986年 Systematic Review of the Mastacembelidae or Spiny Eels of Burma and Thailand, with Description of Two New Species of Macrognathus Tyson R. Roberts (Received September 20, 1985) Abstract Burma and Thailand are inhabited by 14 species of Mastacembelidae, eight Macro gnathus and six Mastacembelus. Two new species of Macrognathus are described from Thailand, one with rostral toothplates and one without. Mastacembelus dayi, known only from Burma, is a valid species related to M. alboguttatus; Mastacembelus favus, from Thailand and Western Ma laysia, is distinct from its close relative M. armatus. Mastacernbeloids or spiny eels are a distinct and Mastacembelus unicolor do not occur there. group of percomorph fishes restricted to fresh On the other hand, it appears that Mastacembelus waters of Africa and Asia. The suborder has favus, known only from Thailand and Western recently been divided into two families, Chaud Malaysia, is distinct from the more widely dis huriidae and Mastacembelidae, and the Masta tributed Mastacembelus armatus, with which it is cembelidae into two subfamilies, Afromastacem sometimes sympatric. belinae (restricted to Africa) and Mastacembelinae Methods and materials (restricted to Asia) (Travers, 1984a, b). Thus understood, Mastacembelinae comprise the genera Descriptions given for some species, including Macrognathus and Mastacembelus. The 14 species those Macrognathus treated in my revision of these two genera found in Burma and Thailand (Roberts, 1980) are quite brief; more detailed are reviewed in this paper. accounts are given of the two new species and of This study began when Sven Kullander of the poorly known species such as Mastacembelus dayi Naturhistoriska Riksmuseet in Stockholm sent 17 and M. oatesii. The only species known from lots of mastacembelids collected in Burma prior Burma and Thailand for which material is not to WW II to me for identification. The material reported on are the relatively well known included specimens of two rare and poorly known Mastacembelus erythrotaenia and Macrognathus species, Mastacembelus dayi and M. oatesii. Sub caudiocellatus, known only from the type speci sequently, I spent several months of 1985 in mens. I examined several lots of M. erythrotaenia Thailand, collecting fresh material and examining in Thailand but did not take data on the specimens specimens in museum collections, including ex and thus they are not included in this report. tensive collections from the poorly known Salween This study is based on specimens deposited in River and its tributaries collected by Sompote the Naturhistoriska Riksmuseet (Stockholm), Ukkatewewat of the National Inland Fisheries NRM ; Institut Royal des Sciences Naturelles de Institute and others in recent years. Thus I am Belgique, IRSNB; California Academy of Sciences, able to report on the rare species Mastacembelus CAS, including material formerly at Stanford alboguttatus collected in the Salween as well as University, CAS-SU; British Museum of Natural on two new species of Macrognathus. One new History, BMNH; Philadelphia Academy of Nat Macrognathus is known only from a single collec ural Sciences, ANSP; Kasetsart University Muse tion, taken in the Meklong River basin of West um of Fisheries, Bangkok, KUMF; National ern Thailand, but the other new species occurs in Inland Fisheries Institute of Thailand, Bangkok, the Meklong, Chao Phrya and Mekong basins NIFI; Thailand National Research Council, Bang and is perhaps the commonest species of the kok, TNRC; University of Michigan Museum of mastacembelids in Central and Eastern Thailand. Zoology, UMMZ ; and Museum National d'His Having examined extensive material from Thai toire Naturelle, Paris, MNHN. land, I conclude that Macrognathus maculatus Fully detailed locality data, including collector ―95― 魚類学雑誌 Japan. J. Ichthyol. 33(2), 1986 and date of collection, if known, are given only perience (including examination of radiographs for new species. In general, I have refrained from of several hundred specimens of Asian and modifying the spelling or wording of localities African mastacembelids), this spine is invariably obtained from labels accompanying specimens. present. It is included in the counts given here. The description of some localities may include Counts of anal fin spines are not recorded for each ambiguities, but it seems better to admit them species because Macrognathus and Mastacembelus rather than to risk introducing erroneous locality invariably have 3 anal fin spines. citation. Definitions of vertebral counts are as follows: In studying mastacembelids radiography is in total vertebrae=all vertebrae with complete and dispensable because meristic characters (including separate centra, including urophore as one; dorsal and anal fin ray counts) are important and predorsal vertebrae =vertebrae with neural spines cannot readily be obtained in other ways. Pub lying anterior to first pterygiophore of spiny lished counts of dorsal and anal fin rays obtained dorsal fin (whether or not first pterygiophore directly from whole specimens which have not bears a dorsal fin spine); abdominal vertebrae= been cleared and stained are often unreliable. all vertebrae lying anterior to anteriormost anal There is also the problem that specimens may be fin pterygiophore; caudal vertebrae =vertebrae anomalous (teratologically or due to mechanical posterior to anteriormost anal fin pterygiophore injury), producing abnormal counts of fin rays (including urophore as 1). In instances where and vertebrae. Such specimens may appear anteriormost anal fin pterygiophore lies exactly normal to casual or even detailed examination of on the hemal spine of a vertebra, that vertebra is external features, but the anomaly is readily ap arbitrarily counted as an abdominal vertebra. parent in radiography. In gathering meristic data on mastacembelids I routinely scan the Key to Mastacembelidae of Burma and Thailand radiograph of each specimen for anomalies in the axial skeleton (mainly vertebral fusions). If 1a. Dorsal fin spines 32 or less; total vertebrae anomalies are present, data are not taken. To usually 84 or less; rostrum relatively large, include data from such specimens would not in some species concave ventral surface serve any useful purpose, and would greatly lessen lined with toothplates; rim of tubular the utility of meristics in defining taxa. While anterior nostril with six fingerlike projec there is an element of subjectivity in determining tions except in one species; adductor arcus whether a specimen is normal, most of the speci palatini muscle attached to first infraorbital mens thus discounted are grossly abnormal. bone (Macrognathus) 2 Thus in the series of 3 specimens of Mastacembelus 1b. Dorsal fin spines 33 or more; total vertebrae armatus from the Tapi River basin, one specimen 79 or more: rostrum relatively small, never has only 68 dorsal fin rays, 69 anal fin rays, and concave ventrally or with rostral tooth 40+44=84 vertebrae. The specimen, including plates; rim of anterior tubular nostril with caudal fin, appears normal externally, but the two fingerlike projections and two broad radiograph reveals that the posteriormost vertebra based flaps; adductor arcus palatini muscle and caudal fin skeleton are anomalous. The not attached to first infraorbital bone other two specimens from this locality have 91 (Mastacembelus) 9 vertebrae, 74 dorsal fin rays, and 76 anal fin rays. 2a. Rostrum with concave ventral surface lined The lowest vertebral count known in M. armatus with paired toothplates; preorbital and is 88 (Roberts, in press). preopercular spines absent ; dorsal fin spines The number of specimens for which data has 13-23 ; predorsal vertebrae 11-21; dorsal been disallowed is relatively few. and anal fins separate from caudal fin 3 Most counts used for mastacembelids are com 2b. Rostrum rounded in cross section, without parable to those generally taken by fish sys toothplates; preorbital spine always and tematists. It should be noted that the spinous preopercular spines usually present; dorsal dorsal fin invariably ends in an enlarged penul fin spines 27-32; predorsal vertebrae 4-8; timate spine, and that the last spine is greatly dorsal and anal fins separate from or joined reduced and often difficult to detect. In my ex tocaudalfin 6 ―96― Roberts: Review of Mastacembelidae 3a. Rostrum relatively small, rostral tooth dorsal and anal fins; caudal fin rays 12-20 plates 7-14 4 ..10 3b. Rostrum relatively large, rostral tooth 9b. Dorsal and anal fins separate from caudal plates 14 or more 5 fin, or joined to caudal fin only near its 4a. Dorsal fin base with series of large, perfectly base, caudal fin outline entirely or almost formed ocelli; an ocellus often at base of entirely separate from that of dorsal and caudal fin; dorsal and caudal fins without anal fins; caudal fin rays 21-27 12 fine dark striations or dots............... 10a. Soft-rayed portions of median fins and ...............Macrognathus siamensis pectoral fins usually with relatively faint or 4b. Dorsal fin base and caudal peduncle with indistinct markings; body usually with zig out ocelli (small dark round spots may be zag longitudinal marks (sometimes broken present); dorsal and caudal fins with fine up into isolated spots) or with a well dark striations or dots................... formed network of broad dark marks 11 .......Macrognathus meklongensis sp. nov. 10b. Soft-rayed portions of median fins and 5a. Rostral toothplates
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Macrognathus Pancalus (Hamilton, 1822) in Laboratory Condition
    769 International Journal of Progressive Sciences and Technologies (IJPSAT) ISSN: 2509-0119. © 2019 International Journals of Sciences and High Technologies http://ijpsat.ijsht-journals.org Vol. 17 No. 1 October 2019, pp. 70-74 Nutritional Analysis of Striped Spiny Eel: Macrognathus pancalus (Hamilton, 1822) in Laboratory Condition Eyad Ahmed 1, Shahriar Islam 1, Israt Jahan 2* 1Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh 2Department of Public Health Nutrition, Primeasia University, Banani, Dhaka, Bangladesh Abstract - The objective of the study was to conduct a nutritional analysis (proximate composition and mineral composition) of a small indigenous fish species, striped spiny eel: Macrognathus pancalus . It is locally known as Pakal fish. Fish specimens were obtained from the local markets (Boro bazar, Jhikorgacha market, Doratana market) of Jashore district. All the nutritional analysis was done by standard AOAC methods. Findings from the study showed that the moisture percentage was about 77%; ash percentage was about 2%; crude protein percentage was (18%); crude lipid percentage was 3%. Fe content of the fish sample was 0.62mg/100g and Ca content was 0.13mg/100g of fresh sample. Keywords - Nutritional, Indigenous Fish, Macrognathus Pancalus. I. INTRODUCTION and Pakistan [9]. A very limited number of studies have been found on proximate and mineral analysis of this Bangladesh with an area of 1,47,570 km 2, is a deltaic species. The objective of this study was to conduct a country in the Ganges, Brahmaputra and Meghna (GBM) nutritional analysis (proximate and minerals) of drainage systems. A huge number of freshwater [1,2] and Macrognathus pancalus.
    [Show full text]
  • On the Length-Weight Relationship of the Little-Known Lesser Spiny Eel, Macrognathus Aculeatus (Bloch) (Pisces: Mastacembelidae)
    Proc. Indian Acad. Sci. (Anim. Sci.), Vol. 95, No.4, July 1986, pp. 423-427. © Printed in India. On the length-weight relationship of the little-known lesser spiny eel, Macrognathus aculeatus (Bloch) (Pisces: Mastacembelidae) R J LAZARUS and P SITA RAMI REDDY Department of Zoology, Madras Christian College (Autonomous), Tambaram, Madras 600 059, India MS received 12 September 1985; revised 24 February 1986 Abstract. The length-weight relationship was computed independently for males and females of Macrognathus aculeatus. The analysis of covariance revealed no significant difference (p = 0'05) between the length-weight relationship of males and females. Hence. a common logarithmic equation (log W = - 5·6934+ 3'1234 log L) was fitted for the species. The regression coefficient oflogarithm of weight on logarithm oflength was found to depart significantly Ip = 0'05) from the cubic value. Keywords. Length-weight relationship; Macrognathus aculeatus; logarithmic equation; regression coefficient; cubic value. 1. Introduction The mathematical relationship between length and weight of fishes and its vital importance in fishery is well known to fishery biologists. The study of length-weight relationship provides information to measure variation from the expected weight or length ofindividual fish or group offish as indicative offatness, general well-being or gonad development (Le Cren 1951). This is of primary importance in computing the yield equations (Ricker 1958), in estimating the number of fish landed and in comparing populations in time and space (Chanchal et al 1978). Of the two measurements, i.e., length and weight, the former is more easily measurable and can be converted into weight, in which the catch is invariably expressed (Bal and Rao 1984).
    [Show full text]
  • Captive Breeding of Peacock Eel, Macrognathus Aculeatus
    Captive Breeding of Peacock Eel, Macrognathus aculeatus S.K.Das and N. Kalita Assam Agricultural University, College of Fisheries, Raha, Nagaon,Assam,India 782 103 World trade of ornamental fishes has reached more than one billion dollars and is growing rapidly at around 10% per year. India currently exports only around Rs. 30 million (US$650,000 million) of ornamental fish. However, the northeast of India has many species of fish that have great potential in the ornamental trade and many of which are attractive to foreign markets. There is great potential to expand the local industry. In Assam there are several native species suitable for the ornamental fish trade. These include Botia dario, Channa stewartii, Channa barca, Gagata cenia, Hara hara, Garra species, Mystus sp. Somileptes gongata, Nemacheilus botia, Macrognathus aculeatus, Mastacembelus pancalus, Rasbora species, Danio species and many others. In Assam there is no organized trade at present. Only a very few people are supplying these fishes to the exporters in places such as Kolkata and Chennai. Since, they are not The peacock eel (M.aculeatus) broodstock directly involved in exporting they are always deprived of the actual price 5-6 local species of ornamental fishes yellowish ventrally and marked with prevailing in the global market. Those of Assam. However, more research two long dark bands on either side. who are supplying ornamental fishes activities are required in this direction There are 3-11 ocelli (false ‘eye’ spots) endemic to this region normally collect to conserve our natural resources and at the base of dorsal fin. Both the the fish from the wild through their fish bio-diversity.
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • 15. Fish Diversity of Triyuga River
    OurShrestha Nature / Our│December Nature (2016), 2016 │ 1414 (1):(1): 124-134 124-134 ISSN: 1991-2951 (Print) ISSN: 2091-2781 (Online) Our Nature Journal homepage: http://nepjol.info/index.php/ON Fish diversity of Triyuga River, Udayapur District, Nepal Jay Narayan Shrestha Department of Zoology, Post Graduate Campus, Biratnagar, Tribhuvan University, Nepal E-mail: [email protected] Abstract The present paper deals with a synopsis of 48 fish species under 35 genera belonging to 17 families and 6 orders from Triyuga River. Some interesting fish species reported from this river are Barilus shacra, Garra annandalei, Psilorhynchoides pseudecheneis, Badis badis, Olyra longicoudata, Tor putitora, Labeo dero and Anguilla bengalensis . Fish diversity of Triyuga river is rich, thus further extensive study is essential for their conservation. Key words : Barilus shacra , Fish, Fattehpur, Mahabharat hill DOI: http://dx.doi.org/10.3126/on.v14i1.16452 Manuscript details: Received: 28.08.2016 / Accepted: 25.11.2016 Citation: Shrestha, J.N. 2016. Fish diversity of Triyuga River, Udayapur District, Nepal . Our Nature 14(1) :124-134. DOI: http://dx.doi.org/10.3126/on.v14i1.16452 Copyright: © Shrestha 2016. Creative Commons Attribution-NonCommercial 4.0 International License. Introduction Initially two small streams, in the form of Udayapur district (26 o39'-27 o22'N and drainage of the lake, take their form from 86 o9'-87 o10'E) is located in the eastern de- two separate spots of the lake and both of velopment region of Nepal. It is bounded them run down towards the south slope by nine districts,Dhankuta and Sunsari in then confluence and become the river Tri- the east, Saptari and Siraha in the south, yuga.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • Mastacembelus Armatus
    e Rese tur arc ul h c & a u D q e A v e f l Gupta and Banerjee, J Aquac Res Development 2016, 7:5 o o l p a m n Journal of Aquaculture DOI: 10.4172/2155-9546.1000429 r e u n o t J ISSN: 2155-9546 Research & Development Review Article Open Access Food, Feeding Habit and Reproductive Biology of Tire-track Spiny Eel (Mastacembelus armatus): A Review Sandipan Gupta* and Samir Banerjee Aquaculture Research Unit, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India *Corresponding author: Sandipan Gupta, Aquaculture Research Unit, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India, Tel: 9830082686; E-mail: [email protected] Rec date: April 25, 2016; Acc date: May 28, 2016; Pub date: May 30, 2016 Copyright: © 2016 Gupta S., Banerjee, S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Mastacembelus armatus which is popularly known as tire-track spiny eel or zig-zag eel is a common fish species of Indian sub-continent. It is a popular table fish due to delicious taste and high nutritional value. In Bangladesh, its demand is even higher than that of the carps. It also has good popularity as an aquarium fish and recently has been reported to be exported as indigenous ornamental fish from India to other countries. Information so far available on its food, feeding habit and reproductive biology is in a scattered manner and till date no such consolidated report on these aspects is available.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Multiple Independent Colonizations Into the Congo Basin During the Continental Radiation of African Mastacembelus Spiny Eels
    DOI: 10.1111/jbi.13037 ORIGINAL ARTICLE Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels Julia J. Day1 | Antoine Fages1 | Katherine J. Brown1,2 | Emmanuel J. Vreven3,4 | Melanie L. J. Stiassny5 | Roger Bills6 | John P. Friel7 | Lukas Ruber€ 8,9 1Department of Genetics, Evolution and Environment, University College London, Abstract London, UK Aim: There has been recent interest in the origin and assembly of continental biotas based 2Department of Life Sciences, The Natural on densely sampled species-level clades, however, studies from African freshwaters are few History Museum, London, UK so that the commonality of macroevolutionary patterns and processes among continental 3Royal Museum for Central Africa, Tervuren, Belgium clades remain to be tested. Within the Afrotropics, the Congo Basin contains the highest 4KU Leuven, Laboratory of Biodiversity and diversity of riverine fishes, yet it is unclear how this fauna was assembled. To address this, Evolutionary Genomics, Leuven, Belgium and the diversification dynamics of a continental radiation, we focus on African Mastacem- 5Department of Ichthyology, American Museum of Natural History, New York, NY, belus spiny eels. USA Location: Afrotropical freshwaters. 6 South African Institute for Aquatic Methods: The most complete molecular phylogeny to date was reconstructed for African Biodiversity, Grahamstown, South Africa spiny eels. Divergence times were estimated applying a Bayesian relaxed clock comparing 7Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL, USA fossil and geological calibrations across nuclear and mitochondrial trees. Biogeographic 8Naturhistorisches Museum der reconstructions, applying a dispersal–extinction–cladogenesis model and lineage diversifica- Burgergemeinde, Bern, Switzerland tion dynamics were examined.
    [Show full text]
  • Web-ICE Aquatic Database Documentation
    OP-GED/BPRB/MB/2016-03-001 February 24, 2016 ICE Aquatic Toxicity Database Version 3.3 Documentation Prepared by: Sandy Raimondo, Crystal R. Lilavois, Morgan M. Willming and Mace G. Barron U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Gulf Ecology Division Gulf Breeze, Fl 32561 1 OP-GED/BPRB/MB/2016-03-001 February 24, 2016 Table of Contents 1 Introduction ............................................................................................................................ 3 2 Data Sources ........................................................................................................................... 3 2.1 ECOTOX ............................................................................................................................ 4 2.2 Ambient Water Quality Criteria (AWQC) ......................................................................... 4 2.3 Office of Pesticide Program (OPP) Ecotoxicity Database ................................................. 4 2.4 OPPT Premanufacture Notification (PMN) ...................................................................... 5 2.5 High Production Volume (HPV) ........................................................................................ 5 2.6 Mayer and Ellersieck 1986 ............................................................................................... 5 2.7 ORD ..................................................................................................................................
    [Show full text]