The Ups and Downs of Trophic Control in Continental Shelf Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

The Ups and Downs of Trophic Control in Continental Shelf Ecosystems Opinion TRENDS in Ecology and Evolution Vol.22 No.5 The ups and downs of trophic control in continental shelf ecosystems Kenneth T. Frank, Brian Petrie and Nancy L. Shackell Ocean Sciences Division, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada Traditionally, marine ecosystem structure was thought to were areas before the onset of significant commercial be determined by phytoplankton dynamics. However, an exploitation. The accumulation of knowledge on trophic integrated view on the relative roles of top-down (con- dynamics could be used to formulate ecosystem guidelines sumer-driven) and bottom-up (resource-driven) forcing in to regulate and manage fisheries in a sustainable fashion. large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning Support for top-down dynamics the management of commercially exploited species such During the early 1990s, Parsons et al. [9] drew attention to as cod, are being used to diagnose mechanisms that could the effects of top predator removal by marine fisheries, affect the composition and relative abundance of species using examples from the Atlantic, Pacific and Antarctic in marine food webs. By assembling published data from Oceans. The effects ranged from replacement by alternate studies in exploited North Atlantic ecosystems, we found predators, increased production at lower trophic levels, pronounced geographical variation in top-down and bot- and/or long-term ecosystem-level change. More recently, tom-up trophic forcing. The data suggest that ecosystem Reid et al. [10] concluded that, although there were few susceptibility to top-down control and their resiliency to convincing examples of top-down control, particularly in exploitation are related to species richness and oceanic the well-studied North Sea, the Barents Sea ecosystem temperature conditions. Such knowledge could be used provided a clear example of top-down and size-selective to produce ecosystem guidelines to regulate and manage predation by fish on zooplankton. fisheries in a sustainable fashion. The Barents Sea is a relatively simple, low-diversity arctic system in contrast to the species-rich, temperate The structure of marine ecosystems North Sea. By analyzing time series of cod Gadus morhua The traditional view of how marine ecosystems are (predator) and shrimp Pandalus borealis (prey) abun- structured is based on resource control, where phytoplank- dances from several North Atlantic continental shelf ton dynamics determines the production and biomass locations, Worm and Myers [11] revealed precipitous variability of the upper trophic level [1–5]. The alternative declines in cod stocks followed by large increases in shrimp viewpoint of consumer or top-down control, where preda- populations in most areas examined. The authors con- tion determines the abundance and composition of prey, cluded that predation was a strong structuring force in was considered limited to nearshore or intertidal commu- the North Atlantic, with a few exceptional areas mainly nities involving one or two dominant predator and prey near the southern limit of the species where bottom-up species [6,7]. Until recently, continental shelf ecosystems processes dominated [11]. were thought immune to top-down control, because of their relatively large spatial scales, high species diversity and Unexpected impacts of overfishing food-web complexity. Steele [8] contended that he knew of The slow recovery (in several instances, their failure to no cases where large changes in predatory marine fish recover [12,13]) of several collapsed North Atlantic cod stocks had affected their food supplies, in other words no populations has also fueled an interest in trophic forcing, top-down control. particularly as it relates to the formation of alternate Here, our viewpoint is based on recent studies of heavily ecosystem states [14,15]. Top-down forcing can lead to a exploited ecosystems in the North Atlantic Ocean whose ‘quasi-permanent’ ecosystem change (i.e. a regime shift type of trophic forcing was assessed from correlations typified by fundamentally different structural and func- between time series of the relative abundances of succes- tional attributes from the one preceding it). Strong [16] sive trophic levels (or species). The response (correlation) maintains that top-down structuring is not the norm for varies temporally and spatially, with a geographical distri- ecosystems but instead represents a form of biological bution that is statistically related to species richness and instability. When larger predator species are depleted ocean temperature. We suggest that species-rich, warmer through overfishing, the balance between predator and water areas are more resilient to exploitation than are prey populations is disrupted. The imbalance can impede relatively species-poor, colder regions. It also appears that the recovery of predators by increased predation and/or undisturbed areas are structured from the bottom up, as competition for food from their prey during the early life stages of the predators [17,18]. This predator–prey role Corresponding author: Frank, K.T. ([email protected]). reversal has been implicated for cod and herring in the lack Available online 12 March 2007. of recovery of cod in the southern Gulf of St Lawrence [19]. www.sciencedirect.com 0169-5347/$ – see front matter . Crown Copyright ß 2007 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.tree.2007.03.002 Opinion TRENDS in Ecology and Evolution Vol.22 No.5 237 In the North Sea, populations of grey gurnard Eutrigla The bottom-up versus top-down controversy gurnardus (an early maturing benthic fish species of no Hunt and McKinnell [24] discuss the complexity of commercial value) have increased dramatically and occupy unraveling the effects of trophic forcing within ecosystems an ecological niche similar to that filled by the once domi- and contend that the necessary data to test hypotheses nant cod. The habit of gurnards of feeding on juveniles of about predator effects on trophic structuring in marine commercially exploited species and their greatly expanded systems are generally lacking. Other investigators have spatial distribution have also been implicated in the lack of lamented that studies involving exploited marine ecosys- recovery of North Sea cod and whiting stocks [20]. tems have reached no consensus on how animal abun- Cury and Shannon [21] discussed how overfishing has dances and productivities are controlled, with apparent initiated and maintained a regime shift within the Ben- demonstrations of both top-down and bottom-up controls guela upwelling system off South Africa through tightly [25]. Still others believe that the tendency for interpreting coupled predation processes, including predator–prey role all marine pelagic food webs from a resource perspective reversals. This suggests that top-down processes are cas- alone has resulted in limited understanding and poor cading to lower trophic levels, resulting in conspicuous predictability of the processes influencing the structure indirect effects that lead to a reorganization of the entire and function of these ecosystems [26]. Unfortunately, stu- food-web. Such a condition (i.e. a trophic cascade) has been dies that have given balanced attention to top-down and repeatedly documented for several freshwater systems bottom-up processes are rare, owing in part to the lack of [22], although infrequently for large marine ecosystems. data sets that include time series of multiple trophic levels An examination of trophic forcing was made within a within and among years [27]. A previous study of a rela- single geographical area, the eastern half of the continen- tively data-rich region (the western North Atlantic) tal shelf off Nova Scotia, Canada, where the resident cod has addressed the spatial and temporal aspects of these population, which had been subject to ongoing heavy processes [28]. exploitation, collapsed during the early 1990s and has failed to recover, despite the cessation of fishing for over The importance of context (where and when) a decade [23]. Analysis of time series spanning several Where decades revealed top-down control and a trophic cascade Frank et al. [28] examined abundance time series of several emanating from the top predator level, resulting in alter- species of predators and prey from nine heavily exploited nating changes (i.e. negative correlations between adjacent regions in the western North Atlantic. The data were tropic levels) in abundance from planktivorous fish species derived from fishery-independent surveys that collect all to herbivorous zooplankton and then to phytoplankton fish species at all life stages (except eggs and larvae). The (Figure 1 [23]). The cascade further penetrated to the basal resultant estimates of numerical abundances are generally nutrient level, as nitrate concentrations were negatively reliable from age 1 onward and diminish the need to correlated with phytoplankton abundance. This study introduce time lags into the correlation analysis because clearly demonstrated that strong, possibly irreversible, the expression of change in abundance of the components cascading effects can occur in marine systems. species making up a trophic level occurs relatively rapidly. Figure 1. Geographical location of the assembled data on trophic forcing. Dot colour refers to the type of trophic forcing and the number on the dot refers to the data source (Table 1). Green dots represent correlation coefficients
Recommended publications
  • Costs of Illegal, Unreported and Unregulated (IUU) Fishing in EU Fisheries
    Costs of Illegal, Unreported and Unregulated (IUU) Fishing in EU Fisheries November 2008 Economics for the Environment Consultancy Ltd 73–75 Mortimer Street, London W1W 7SQ, tel: 44 (0) 20 7580 5383, fax: 44 (0) 20 7580 5385, [email protected], www.eftec.co.uk Costs of IUU Fishing in EU fisheries This report was commissioned by The Pew Environment Group and has been prepared by: Dr Rob Tinch Ian Dickie Bruno Lanz. Acknowledgements The study team would like to thank the following people for their help with data, suggestions for the research and writing, and graphics: Markus Knigge, Uta Bellion, Mike Walker, Kathryn Semmens, Olga Anderson, Rashid Sumaila, Tony Pitcher, Aniol Esteban, Dirk Zeller, Reg Watson and Hilary Tranter. Any remaining errors are the responsibility of the authors alone. The Pew Environment Group, the conservation arm of the Pew Charitable Trusts, wishes to thank Economics for the Environment Consultancy Ltd (eftec) for compiling the data and preparing this report. Costs of IUU Fishing in EU fisheries EXECUTIVE SUMMARY......................................................................................4 1. INTRODUCTION .......................................................................................6 2. ASSESSING IUU ACTIVITY IN EU FISHERIES ......................................................8 2.1 SCOPE OF ANALYSIS ................................................................................ 8 2.2 WHAT DRIVES IUU FISHING? ..................................................................... 11 2.3 HOW MUCH
    [Show full text]
  • Plankton Planet – Proof-Of-Concept & Perspectives
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.263442; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Plankton Planet – Proof-of-Concept & Perspectives Plankton Planet: ‘seatizen’ oceanography to assess open ocean life at the planetary scale Colomban de Vargas1,2,3 #, Thibaut Pollina2,4, Sarah Romac1,2,3, Noan Le Bescot1,2, Nicolas Henry1,2,3, Calixte Berger2, Sébastien Colin1,2, Nils Haëntjens5,2, Margaux Carmichael2, David Le Guen2, Johan Decelle6, Frédéric Mahé7, Emmanuel Malpot8, Carole Beaumont9, Michel Hardy10, the planktonauts, the Plankton Planet team, Damien Guiffant2, Ian Probert1, David F. Gruber11, Andy Allen12, Gabriel Gorsky13,2, Mick Follows14, Barry B. Cael15, Xavier Pochon16,17, Romain Troublé18,2 #, Fabien Lombard2,13,19, Emmanuel Boss5,2, Manu Prakash4,2 # 1 Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France. 2 Plankton Planet NGO, Station Biologique de Roscoff & Atelier PontonZ Morlaix, 29680 Roscoff, France 3 Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France 4 Stanford University, Department of Bioengineering, Stanford, CA 94305, USA. 5 University of Maine, School of Marine Sciences, 5706 Aubert Hall, Orono, ME 04473, USA 6 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA; 38054, Grenoble, France 7 CIRAD, UMR GBPI, 34398, Montpellier, France 8 Moana Fisheries Ltd, Cawthron Aquaculture Park, Nelson, New Zealand 9 On board ‘Folligou’ 10 On board ‘Taravana’ 11 Baruch College and the Graduate Center, Department of Natural Sciences, City University of New York, USA 12 J.
    [Show full text]
  • Les Dossiers D'agropolis International
    AGROPOLIS INTERNATIONAL agriculture • food • environment Agropolis International Agropolis is an international campus devoted to agricultural and brings together institutions environmental sciences. There is significant potential for scientific and of research and higher technological expertise: more than 2 200 scientists in more than 110 education in Montpellier research units in Montpellier and Languedoc-Roussillon, including 300 and Languedoc-Roussillon scientists in 60 countries. in partnership with local communities, companies and regional enterprises, Agropolis International is structured according to a broad range of and in close cooperation research themes corresponding to the overall scientific, technological with international and economic issues of development: institutions. This scientific • Agronomy and Mediterranean community has one main and tropical agricultural production sectors objective—the economic • Biotechnology and food technology and social development • Biodiversity, natural resources and ecosystems of Mediterranean and • Water, environment and sustainable development tropical regions. • Rural development and societies • Food and health • Food quality and safety Agropolis International promotes the capitalisation and enhancement of knowledge, personnel training and technology transfer. It is a hub for visitors and international exchanges, while promoting initiatives based on multilateral and collective expertise and contributing to the scientific and technological knowledge needed for preparing development policies. Research experience on aquatic ecosystems Aquatic ecosystems: and resources in Montpellier and Languedoc- Resources and development Roussillon Region Within the biosphere, aquatic environments and living resources supply about two thirds of the goods and services that the biosphere provides human beings. A number of these environments are already disturbed and their resources over-used. This is related notably Biodiversity and functioning Page 4 to climate change and to the different uses of soil.
    [Show full text]
  • 7. Documentation
    7. Documentation Papahänaumokuäkea Marine National Monument 7. Documentation 7.a Photographs, Image Inventory and Other Audiovisual Materials (Photo: James Watt) Table 7.1: Image inventory and authorization Id. No. Format Caption Date Photographer / Copyright owner Contact details: Non- Director of (if different than copyright owner exclusive the video photographer/ cession of director of video) rights Birds 1 JPEG French Frigate Shoals 2005 James Watt Sue Watt Sue@Seapics 1 - Red Footed Boobie 808-329-4253 Sunset Birds 2 JPEG Kure - Laysan 2005 NOAA Andy.Collins@ Y Albatross NOAA.gov Birds 3 JPEG Laysan - Great 2005 James Watt Sue Watt Sue@Seapics 1 frigatebird 808-329-4253 Birds 4 JPEG Laysan - Laysan Duck 2005 James Watt Sue Watt Sue@Seapics 1 808-329-4253 Birds 5 TIF Midway Atoll - White 2007 Sandra Hall USFWS Barbara_ Y Tern Chick [email protected] Cetaceans 1 JPEG Humpback Whale 2007 Doug Perrine HIHWNMS Naomi.Mcintosh@ 2 224 Mother and Calf NOAA.gov Cetaceans 2 JPEG Leaping Dolphin 2005 Andy Collins NOAA Andy.Collins@ Y NOAA.gov Cetaceans 3 JPEG Midway - Spinner 2005 James Watt Sue Watt Sue@Seapics 1 Dolphin bottom view 808-329-4253 Coral & JPEG French Frigate Shoals 2007 JE Maragos USFWS Barbara_ Y Invertebrates - Acropora Coral [email protected] 1 Coral & JPEG French Frigate Shoals 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates - Table coral 808-329-4253 2 Coral & JPEG Hertwigia Sponge 2007 NOWRAMP NOAA Andy.Collins@ Y Invertebrates NOAA.gov 3 Coral & JPEG Kure - Triton Trumpet 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates 808-329-4253 4 Coral & JPEG Kure-Banded Spiny 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates Lobster 808-329-4253 5 7.
    [Show full text]
  • Author's Personal Copy ARTICLE in PRESS
    Author's personal copy ARTICLE IN PRESS Deep-Sea Research II 56 (2009) 1816–1823 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 A one ocean model of biodiversity Ronald K. O’Dor a,Ã, Katja Fennel b, Edward Vanden Berghe c a Consortium for Ocean Leadership, 1201 New York Ave., Washington, DC 20003, USA b Oceanography Department, Dalhousie University, Halifax, NS, Canada c Ocean Biogeographic Information System, Rutgers University, NJ, USA article info abstract Available online 28 May 2009 The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have Keywords: shown us that hundreds of millions of years of ocean history can be revealed from records of a single Biodiversity phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the Oceans relationships of hundreds of phyla to track this history back billions of years. The technologies Scaling demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or Models unknowable. The secrets of the largest component of the biosphere are knowable. The cost of Ecological balance understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open Survival ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details.
    [Show full text]
  • The Future of Oysters in Chesapeake Bay Different Paths to Restoration
    Issue 2001­03 Summer, 2001 In This Issue: 1. The Future of Oysters in Chesapeake Bay: Different Paths to Restoration 2. Field Trial Summary of C. ariakensis vs. C. virginica 3. Oyster Resources on the Web 4. A Man and his Ideas: Remembering Max Chambers 5. Low­Cost Recirculating Systems for Eels 6. Research Briefs – Reports from UM Labs: Restoring Atlantic Sturgeon to the Chesapeake Bay Molecular Mechanisms Regulating Fish Muscle Development and Growth Sturgeon Ranching in Russia 7. The Business of Charter Boats 8. Aquaculture in the Classroom Update 9. New Publications 10. Maryland Sea Grant Extension Program Internet Addresses 11. Subscription Information The Future of Oysters in Chesapeake Bay Different Paths to Restoration Don Webster, Eastern Shore Marine Agent Don Meritt, Shellfish Aquaculture Specialist After record­setting oyster harvests in the late 19th century, Maryland's oyster fishery began its long decline. By the mid­ 1930s it had settled into annual landings of two to three million bushels a year from public oyster grounds and remained there for the next half century. In the last decade, however, harvests have plunged to less than a tenth of what they were, averaging under 200,000 bushels a year. This steep downturn had its origins in the 1950s, when the oyster parasite Haplosporidium nelsoni spread MSX disease from Delaware Bay southward through the coastal bays and into the lower Chesapeake. MSX and, later, Dermo began ravaging oyster reefs that were already damaged from years of overharvesting, habitat destruction, land erosion and runoff, pollutants and questionable management practices. MSX caused a fundamental shift in the focus of production: until 1955, Virginia had led Bay­wide harvests with production from private, or leased, grounds.
    [Show full text]
  • Environmental Handbook for Towed Water Sports
    IInntteerrnnaattiioonnaall WWaatteerrsskkii && WWaakkeebbooaarrdd FFeeddeerraattiioonn Environmental Handbook for Towed Water Sports 2019 REVISION Speed Ski Wakeboard Show ACKNOWLEDGEMENTS The International Waterski & Wakeboard Federation would like to thank Green & Gold Inc, USA Waterski and Wake Sports all those who contributed to this Handbook, including Aubrey Sheena, Leon Larson and the members of the IWWF Environment Committee. A special thanks goes to the Ontario Marina Operators Association for granting us permission to use sections of their "Clean Marine Practices Handbook" -- notably the sections on dock management, pollutants and the Clean Marine Policy, and USA Water Ski for the use of information from it's Waterways Education Manual. Other thanks go to the many individuals, organizations and company representatives who took the time to answer e-mail, phone interviews, surveys and questions throughout the research phase of this project. In particular, the United States Environmental Protection Agency was a valuable source of research information on off-road engines and scientific studies. Thanks also to OMC (the Outboard Marine Corporation now Bombardier) for the latest information on cleaner engine developments, and the National Marine Manufacturers Association (NMMA) for reprints of marine fuels research, WSIA (Water Sports Industry Assoc) 2 IWWF Environmental Handbook CONTENTS ACKNOWLEDGEMENTS ....................................................................................Page 2 PART I – INTRODUCTION ..................................................................................Page 5 A. Why this Handbook B. Objectives of this Handbook C. What’s Inside D. The Sports of Waterskiing and Wakeboarding E. Towed Water Sports Into the Future F. Benefits of Environmental Management PART II –WATER SKIING, WAKEBOARDING, BOATING, AND THE ENVIRONMENT ISSUES and IMPACTS ................................................Page 9 A. Overview B. Benefits of Waterskiing and Boating on the Aquatic Environment C.
    [Show full text]
  • The Visibility of Predator and Prey with Respect to Feeding Behaviour
    MARINE ECOLOGY PROGRESS SERIES Published October 5 Mar Ecol Prog Ser To see and not be seen: the visibility of predator and prey with respect to feeding behaviour Helmut Thetmeyer *, Uwe Kils Institut fur Meereskunde an der Universitat Kiel, Abteilung Fischereibiologie. Dusternbrooker Weg 20, D-24105 Kiel, Germany ABSTRACT. The visibility of herring Clupea harengus and mysids Praunus flexuosus was studied in the shallow water of the Kiel Fjord (Baltic Sea).The apparent brightness contrast of the predator (her- nng) and its prey (mysid)were measured from various visual angles with an underwater video system. The camera looked at the prey from the predator's point of view and vice versa. During a head-on encounter, the contrast of the prey against the ocean background was very poor. With increasing visual angles (relative to a horizontal plane), the visibility of the prey unproved. The predator was most visi- ble from below, but was excellently camouflaged when observed from above or from a horizontal line of vision. When the herring was located 30 to 90' below the mysid, the prey was fairly visible to the predator but the predator was nearly invisible to the prey. By incorporating these ocean optics and tak- ing into account the limits of the maneuvering potential of cruis~ngherring, an optimal attack angle can be postulated: at oblique predator-prey configurations between 30 and 60°, herring are still capable of modulating their normal cruising to an upward directed position while the preconditions of a success- ful attack - to see and not to be seen - are fulfilled.
    [Show full text]
  • 1 Introduction
    IIFET 2004 Japan Proceedings THE ROLE OF IIFET IN BUILDING HUMAN CAPITAL FOR 21ST CENTURY FISHERIES MANAGEMENT Michael Harte, Falkland Islands Government, [email protected] Gil Sylvia, Coastal Oregon Marine Experiment Station, Oregon State University, [email protected] Laura W. Jodice, Clemson University, [email protected] ABSTRACT The nations of the world confront complex challenges in managing fisheries resources in the 21st century. While attention focuses on the need for new institutional ideas, designing and implementing effective governance may be imperiled by inadequate investment in the human capital needed to lead, innovate, and manage. Economics, which integrates social, biological, and policy attributes of a fishery, is increasingly recognized as a core discipline, essential to system level decision-making. Building human capital requires leadership and cooperation from the highest levels of national and international authorities. However, management agencies are overwhelmed by challenges that hinder attention to capacity building, and professional organizations rarely focus on rigorous fishery management education. Ideally, an international organization or consortium would be charged with facilitating fishery management training at regional and national scales. Is there a role for IIFET in progressing this goal and assuring the integration of economics in capacity building frameworks? IIFET may be uniquely positioned to contribute in defining training competencies and methods relevant to rigorous integration of economics in initiatives for building human capital. Keywords: training, human capital, managers INTRODUCTION A long list of challenging conceptual and operational issues faces the fishery manager of the 21st Century. There is increasing public demand for stakeholder participation in all aspects of fisheries management.
    [Show full text]
  • Towards the Implementation of an Integrated Approach to Fisheries Resources Management in Ifremer, France
    Aquat. Living Resour. 22, 381–394 (2009) Aquatic c EDP Sciences, IFREMER, IRD 2010 DOI: 10.1051/alr/2009057 Living www.alr-journal.org Resources Foreword Towards the implementation of an integrated approach to fisheries resources management in Ifremer, France Serge M. Garcia1 and Patrick Prouzet2,a 1 Former Director, FAO Fisheries Management Division (retired) 2 Ifremer, DPCP, 1 allée du Parc Montaury, 64600 Anglet, France Implementing the Ecosystem Approach to Fisheries is a demanding exercise even though a more or less sophisticated approach might be adopted depending on the fishery or problem concerned and on the capacity available to deal with it. In France, DEMOSTEM, a programme of Ifremer was established to try to practically apply the EAF principles across the high diversity of situations existing in the country. The article summarizes very briefly the lessons learned through this programme implementation and some of the key findings and outcomes. In conclusion, it offers some perspectives on the whole process. 1 Introduction generated, are testing the available political will and capac- ity of governments. States are facing simultaneously a huge During the last decade, the co-evolution of fishery science environmental bill -a small part of which relates to fisheries, and governance, at the interface between the aquatic systems the rising needs of a growing world population, a shortage of and their users, has been ongoing at a faster pace. On the one food and livelihood in many countries, in a context of deep hand, societal environmental concerns concerning contamina- economic crisis. Under these conditions, and considering the tion, habitat degradation and climate change are growing, call- speed of past improvements, nobody can realistically expect ing for more comprehensive, anticipatory and precautionary that, by 2015, EAF will have been generally implemented and action and hence advice.
    [Show full text]
  • Perspectives on Ecosystem-Based Approaches to the Management of Marine Resources
    MARINE ECOLOGY PROGRESS SERIES Vol. 274: 269–303, 2004 Published June 24 Mar Ecol Prog Ser THEME SECTION Perspectives on ecosystem-based approaches to the management of marine resources Idea and coordination: Howard I. Browman, Konstantinos I. Stergiou Contributors*: Howard I. Browman, Philippe M. Cury, Ray Hilborn, Simon Jennings, Heike K. Lotze, Pamela M. Mace, Steven Murawski, Daniel Pauly, Michael Sissenwine, Konstantinos I. Stergiou, Dirk Zeller Introduction than the sum of its parts—a commendable step for- ward in-and-of itself. However, there is some disagree- 1, 2 Howard I. Browman **, Konstantinos I. Stergiou ment over whether the EAF, and MPAs, truly represent 1Institute of Marine Research - Austevoll, 5392 Storebø, Norway alternatives that will be any more effective in assisting Email: [email protected] us with sustainable management of marine resources 2Aristotle University of Thessaloniki, School of Biology, than historical practices. Regardless of the approach Department of Zoology, Box 134, Thessaloniki 54124, Greece that is taken to decide upon catch limits, or on the loca- Email: [email protected] tion, size and number of MPAs, there will always be the complicated (and socio-economically-politically The urgent need to reduce the intense pressure and charged) question of how these policies should be destructive power that modern fishing practices apply implemented and enforced; that is, governance (see, to the world’s fisheries, and the oceans that support for example, Mace 2001, Sissenwine & Mace 2003, them, is now widely recognized (e.g. FAO 2002a, Caddy 2004, Cochrane 2004, Stefansson 2004). To Hilborn et al. 2003). However, there is far less agree- address these issues, we solicited essay-style contribu- ment over the exact levels to which fishing mortality tions from several of the marine and fishery scientists must be reduced and over how to reduce the indirect who are at the forefront of the ongoing debate.
    [Show full text]
  • News from the School of Ocean Sciences And
    JUNE 2020 THE BRIDGE News from the School of Ocean Sciences and the School of Ocean Sciences Alumni Association 2 CONTENTS 3 Making a Difference in the Current Crisis 5 Looking to the future 6 Following in the footsteps of Nansen 9 Jacqui McGlade welcomed back to Bangor 9 Top 70 Globally for Sustainability 12 Introductions, Promotions and Awards 17 SOS Research Highlights 23 College of Environmental Sciences and Engineering 24 Photo Competition 41 Where Are They Now? Please send your School of Ocean THE BRIDGE June 2020 Sciences news to: 43 A Message From Our Chair [email protected] 45 Alumni Research Please send your School of Ocean Sciences Alumni Association (SOSA) 46 News From Our Alumni news to: [email protected] 50 Alumni Articles 54 Alumni Event Follow the School on social media: facebook.com/sosbangor 55 In Memoriam twitter.com/sos_bangor_uni 56 Alumni Bridges 59 School of Ocean Sciences Staff 60 Publications (November 2019 - May 2020) Welcome to our School of Ocean Sciences (SOS) newsletter which incorporates the alumni newsletter “The Bridge”. In these exceptional days of lockdown we are happy to be able to bring you the latest news and successes from the school, and also from some of our graduates. We are excited to share a range of our research highlights, including important research on tracking the COVID-19 virus. We apologise that, due to the lockdown, we are not able to bring you as much alumni news as usual, but this will leave more for the next edition! A clear message from the current situation is that we can’t fight nature, and so we must focus our minds on the need to develop a more sustainable future.
    [Show full text]