Perspectives on Ecosystem-Based Approaches to the Management of Marine Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Costs of Illegal, Unreported and Unregulated (IUU) Fishing in EU Fisheries
Costs of Illegal, Unreported and Unregulated (IUU) Fishing in EU Fisheries November 2008 Economics for the Environment Consultancy Ltd 73–75 Mortimer Street, London W1W 7SQ, tel: 44 (0) 20 7580 5383, fax: 44 (0) 20 7580 5385, [email protected], www.eftec.co.uk Costs of IUU Fishing in EU fisheries This report was commissioned by The Pew Environment Group and has been prepared by: Dr Rob Tinch Ian Dickie Bruno Lanz. Acknowledgements The study team would like to thank the following people for their help with data, suggestions for the research and writing, and graphics: Markus Knigge, Uta Bellion, Mike Walker, Kathryn Semmens, Olga Anderson, Rashid Sumaila, Tony Pitcher, Aniol Esteban, Dirk Zeller, Reg Watson and Hilary Tranter. Any remaining errors are the responsibility of the authors alone. The Pew Environment Group, the conservation arm of the Pew Charitable Trusts, wishes to thank Economics for the Environment Consultancy Ltd (eftec) for compiling the data and preparing this report. Costs of IUU Fishing in EU fisheries EXECUTIVE SUMMARY......................................................................................4 1. INTRODUCTION .......................................................................................6 2. ASSESSING IUU ACTIVITY IN EU FISHERIES ......................................................8 2.1 SCOPE OF ANALYSIS ................................................................................ 8 2.2 WHAT DRIVES IUU FISHING? ..................................................................... 11 2.3 HOW MUCH -
Plankton Planet – Proof-Of-Concept & Perspectives
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.263442; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Plankton Planet – Proof-of-Concept & Perspectives Plankton Planet: ‘seatizen’ oceanography to assess open ocean life at the planetary scale Colomban de Vargas1,2,3 #, Thibaut Pollina2,4, Sarah Romac1,2,3, Noan Le Bescot1,2, Nicolas Henry1,2,3, Calixte Berger2, Sébastien Colin1,2, Nils Haëntjens5,2, Margaux Carmichael2, David Le Guen2, Johan Decelle6, Frédéric Mahé7, Emmanuel Malpot8, Carole Beaumont9, Michel Hardy10, the planktonauts, the Plankton Planet team, Damien Guiffant2, Ian Probert1, David F. Gruber11, Andy Allen12, Gabriel Gorsky13,2, Mick Follows14, Barry B. Cael15, Xavier Pochon16,17, Romain Troublé18,2 #, Fabien Lombard2,13,19, Emmanuel Boss5,2, Manu Prakash4,2 # 1 Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France. 2 Plankton Planet NGO, Station Biologique de Roscoff & Atelier PontonZ Morlaix, 29680 Roscoff, France 3 Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France 4 Stanford University, Department of Bioengineering, Stanford, CA 94305, USA. 5 University of Maine, School of Marine Sciences, 5706 Aubert Hall, Orono, ME 04473, USA 6 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA; 38054, Grenoble, France 7 CIRAD, UMR GBPI, 34398, Montpellier, France 8 Moana Fisheries Ltd, Cawthron Aquaculture Park, Nelson, New Zealand 9 On board ‘Folligou’ 10 On board ‘Taravana’ 11 Baruch College and the Graduate Center, Department of Natural Sciences, City University of New York, USA 12 J. -
CBD Technical Series No. 87 Assessing Progress Towards Aichi Biodiversity Target 6 on Sustainable Marine Fisheries
Secretariat of the CBD Technical Series No. 87 Convention on Biological Diversity ASSESSING PROGRESS87 TOWARDS AICHI BIODIVERSITY TARGET 6 ON SUSTAINABLE MARINE FISHERIES CBD Technical Series No. 87 Assessing Progress towards Aichi Biodiversity Target 6 on Sustainable Marine Fisheries Serge M. Garcia and Jake Rice Fisheries Expert Group of the IUCN Commission of Ecosystem Management Published by the Secretariat of the Convention on Biological Diversity ISBN: 9789292256616 Copyright © 2020, Secretariat of the Convention on Biological Diversity The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views reported in this publication do not necessarily represent those of the Convention on Biological Diversity. This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Citation Garcia, S.M. and Rice, J. 2020. Assessing Progress towards Aichi Biodiversity Target 6 on Sustainable Marine Fisheries. Technical Series No. 87. Secretariat of the Convention on Biological Diversity, Montreal, 103 pages For further information, please contact: Secretariat of the Convention on Biological Diversity World Trade Centre 413 St. Jacques Street, Suite 800 Montreal, Quebec, Canada H2Y 1N9 Phone: 1(514) 288 2220 Fax: 1 (514) 288 6588 E-mail: [email protected] Website: http://www.cbd.int This publication was made possible thanks to financial assistance from the Government of Canada. -
Les Dossiers D'agropolis International
AGROPOLIS INTERNATIONAL agriculture • food • environment Agropolis International Agropolis is an international campus devoted to agricultural and brings together institutions environmental sciences. There is significant potential for scientific and of research and higher technological expertise: more than 2 200 scientists in more than 110 education in Montpellier research units in Montpellier and Languedoc-Roussillon, including 300 and Languedoc-Roussillon scientists in 60 countries. in partnership with local communities, companies and regional enterprises, Agropolis International is structured according to a broad range of and in close cooperation research themes corresponding to the overall scientific, technological with international and economic issues of development: institutions. This scientific • Agronomy and Mediterranean community has one main and tropical agricultural production sectors objective—the economic • Biotechnology and food technology and social development • Biodiversity, natural resources and ecosystems of Mediterranean and • Water, environment and sustainable development tropical regions. • Rural development and societies • Food and health • Food quality and safety Agropolis International promotes the capitalisation and enhancement of knowledge, personnel training and technology transfer. It is a hub for visitors and international exchanges, while promoting initiatives based on multilateral and collective expertise and contributing to the scientific and technological knowledge needed for preparing development policies. Research experience on aquatic ecosystems Aquatic ecosystems: and resources in Montpellier and Languedoc- Resources and development Roussillon Region Within the biosphere, aquatic environments and living resources supply about two thirds of the goods and services that the biosphere provides human beings. A number of these environments are already disturbed and their resources over-used. This is related notably Biodiversity and functioning Page 4 to climate change and to the different uses of soil. -
7. Documentation
7. Documentation Papahänaumokuäkea Marine National Monument 7. Documentation 7.a Photographs, Image Inventory and Other Audiovisual Materials (Photo: James Watt) Table 7.1: Image inventory and authorization Id. No. Format Caption Date Photographer / Copyright owner Contact details: Non- Director of (if different than copyright owner exclusive the video photographer/ cession of director of video) rights Birds 1 JPEG French Frigate Shoals 2005 James Watt Sue Watt Sue@Seapics 1 - Red Footed Boobie 808-329-4253 Sunset Birds 2 JPEG Kure - Laysan 2005 NOAA Andy.Collins@ Y Albatross NOAA.gov Birds 3 JPEG Laysan - Great 2005 James Watt Sue Watt Sue@Seapics 1 frigatebird 808-329-4253 Birds 4 JPEG Laysan - Laysan Duck 2005 James Watt Sue Watt Sue@Seapics 1 808-329-4253 Birds 5 TIF Midway Atoll - White 2007 Sandra Hall USFWS Barbara_ Y Tern Chick [email protected] Cetaceans 1 JPEG Humpback Whale 2007 Doug Perrine HIHWNMS Naomi.Mcintosh@ 2 224 Mother and Calf NOAA.gov Cetaceans 2 JPEG Leaping Dolphin 2005 Andy Collins NOAA Andy.Collins@ Y NOAA.gov Cetaceans 3 JPEG Midway - Spinner 2005 James Watt Sue Watt Sue@Seapics 1 Dolphin bottom view 808-329-4253 Coral & JPEG French Frigate Shoals 2007 JE Maragos USFWS Barbara_ Y Invertebrates - Acropora Coral [email protected] 1 Coral & JPEG French Frigate Shoals 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates - Table coral 808-329-4253 2 Coral & JPEG Hertwigia Sponge 2007 NOWRAMP NOAA Andy.Collins@ Y Invertebrates NOAA.gov 3 Coral & JPEG Kure - Triton Trumpet 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates 808-329-4253 4 Coral & JPEG Kure-Banded Spiny 2005 James Watt Sue Watt Sue@Seapics 1 Invertebrates Lobster 808-329-4253 5 7. -
Author's Personal Copy ARTICLE in PRESS
Author's personal copy ARTICLE IN PRESS Deep-Sea Research II 56 (2009) 1816–1823 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 A one ocean model of biodiversity Ronald K. O’Dor a,Ã, Katja Fennel b, Edward Vanden Berghe c a Consortium for Ocean Leadership, 1201 New York Ave., Washington, DC 20003, USA b Oceanography Department, Dalhousie University, Halifax, NS, Canada c Ocean Biogeographic Information System, Rutgers University, NJ, USA article info abstract Available online 28 May 2009 The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have Keywords: shown us that hundreds of millions of years of ocean history can be revealed from records of a single Biodiversity phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the Oceans relationships of hundreds of phyla to track this history back billions of years. The technologies Scaling demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or Models unknowable. The secrets of the largest component of the biosphere are knowable. The cost of Ecological balance understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open Survival ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. -
The Future of Oysters in Chesapeake Bay Different Paths to Restoration
Issue 200103 Summer, 2001 In This Issue: 1. The Future of Oysters in Chesapeake Bay: Different Paths to Restoration 2. Field Trial Summary of C. ariakensis vs. C. virginica 3. Oyster Resources on the Web 4. A Man and his Ideas: Remembering Max Chambers 5. LowCost Recirculating Systems for Eels 6. Research Briefs – Reports from UM Labs: Restoring Atlantic Sturgeon to the Chesapeake Bay Molecular Mechanisms Regulating Fish Muscle Development and Growth Sturgeon Ranching in Russia 7. The Business of Charter Boats 8. Aquaculture in the Classroom Update 9. New Publications 10. Maryland Sea Grant Extension Program Internet Addresses 11. Subscription Information The Future of Oysters in Chesapeake Bay Different Paths to Restoration Don Webster, Eastern Shore Marine Agent Don Meritt, Shellfish Aquaculture Specialist After recordsetting oyster harvests in the late 19th century, Maryland's oyster fishery began its long decline. By the mid 1930s it had settled into annual landings of two to three million bushels a year from public oyster grounds and remained there for the next half century. In the last decade, however, harvests have plunged to less than a tenth of what they were, averaging under 200,000 bushels a year. This steep downturn had its origins in the 1950s, when the oyster parasite Haplosporidium nelsoni spread MSX disease from Delaware Bay southward through the coastal bays and into the lower Chesapeake. MSX and, later, Dermo began ravaging oyster reefs that were already damaged from years of overharvesting, habitat destruction, land erosion and runoff, pollutants and questionable management practices. MSX caused a fundamental shift in the focus of production: until 1955, Virginia had led Baywide harvests with production from private, or leased, grounds. -
California Spiny Lobster Fishery Management Plan and Proposed Regulatory Amendments
Final Initial Study/Negative Declaration California Spiny Lobster Fishery Management Plan and Proposed Regulatory Amendments PREPARED FOR: California Fish and Game Commission 1416 Ninth Street, Suite 1320 Sacramento, CA 95814 Contact: Tom Mason California Department of Fish and Wildlife Senior Environmental Scientist PREPARED BY: Ascent Environmental, Inc. 455 Capitol Mall, Suite 300 Sacramento, CA 95814 Contact: Curtis E. Alling, AICP Michael Eng March 2016 Cover Photo: Courtesy of California Department of Fish and Wildlife 15010103.01 COMMENTS AND RESPONSES TO COMMENTS This chapter of the Final Initial Study/Negative Declaration (Final IS/ND) contains the comment letters received during the 45-day public review period for the Draft Initial Study/Negative Declaration (Draft IS/ND), which commenced on January 21, 2016 and closed on March 7, 2016. The Notice of Completion was provided to the State Clearinghouse on January 21, 2016 and the IS/ND was circulated to the appropriate state agencies. COMMENTERS ON THE DRAFT IS/ND Table 1 below indicates the numerical designation for the comment letters received, the author of the comment letter, and the date of the comment letter. Comment letters have been numbered in the order they were received by the California Department of Fish and Wildlife (CDFW). Table 1 List of Commenters Letter Agency/Organization/Name Date 1 Native American Heritage Commission February 8, 2016 2 William Barnett January 29, 2016 3 Ken Kurtis, Reef Seekers Dive Co. January 31, 2016 4 A. Talib Wahab, Avicena Network, Inc. March 6, 2016 5 Center for Biological Diversity March 7, 2016 6 Christopher Miller March 7, 2016 COMMENTS AND RESPONSES ON THE DRAFT IS/ND The written comments received on the Draft IS/ND and the responses to those comments are provided in this chapter of the Final IS/ND. -
Let Us Eat Fish
Let Us Eat Fish By RAY HILBORN Published: April 14, 2011 Yuko Shimizu THIS Lent, many ecologically conscious Americans might feel a twinge of guilt as they dig into the fish on their Friday dinner plates. They shouldn’t. Over the last decade the public has been bombarded by apocalyptic predictions about the future of fish stocks — in 2006, for instance, an article in the journal Science projected that all fish stocks could be gone by 2048. Subsequent research, including a paper I co-wrote in Science in 2009 with Boris Worm, the lead author of the 2006 paper, has shown that such warnings were exaggerated. Much of the earlier research pointed to declines in catches and concluded that therefore fish stocks must be in trouble. But there is little correlation between how many fish are caught and how many actually exist; over the past decade, for example, fish catches in the United States have dropped because regulators have lowered the allowable catch. On average, fish stocks worldwide appear to be stable, and in the United States they are rebuilding, in many cases at a rapid rate. The overall record of American fisheries management since the mid-1990s is one of improvement, not of decline. Perhaps the most spectacular recovery is that of bottom fish in New England, especially haddock and redfish; their abundance has grown sixfold from 1994 to 2007 . Few if any fish species in the United States are now being harvested at too high a rate, and only 24 percent remain below their desired abundance . Much of the success is a result of the Magnuson Fishery Conservation and Management Act , which was signed into law 35 years ago this week. -
Evolutionary Consequences of Fishing and Their Implications For
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Applied Systems Analysis (IIASA) Evolutionary Applications ISSN 1752-4571 SYNTHESIS Evolutionary consequences of fishing and their implications for salmon Jeffrey J. Hard,1 Mart R. Gross,2 Mikko Heino,3,4,5 Ray Hilborn,6 Robert G. Kope,1 Richard Law7 and John D. Reynolds8 1 Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA, USA 2 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada 3 Department of Biology, University of Bergen, Bergen, Norway 4 Institute of Marine Research, Bergen, Norway 5 Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 6 School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA 7 Department of Biology, University of York, York, UK 8 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada Keywords Abstract adaptation, fitness, heritability, life history, reaction norm, selection, size-selective We review the evidence for fisheries-induced evolution in anadromous salmo- mortality, sustainable fisheries. nids. Salmon are exposed to a variety of fishing gears and intensities as imma- ture or maturing individuals. We evaluate the evidence that fishing is causing Correspondence evolutionary changes to traits including body size, migration timing and age of Jeffrey J. Hard, Conservation Biology Division, maturation, and we discuss the implications for fisheries and conservation. Few Northwest Fisheries Science Center, 2725 studies have fully evaluated the ingredients of fisheries-induced evolution: selec- Montlake Boulevard East, Seattle, WA 98112, USA. Tel.: (206) 860 3275; fax: (206) 860 tion intensity, genetic variability, correlation among traits under selection, and 3335; e-mail: [email protected] response to selection. -
Foundations of Fisheries Science
Foundations of Fisheries Science Foundations of Fisheries Science Edited by Greg G. Sass Northern Unit Fisheries Research Team Leader Wisconsin Department of Natural Resources Escanaba Lake Research Station 3110 Trout Lake Station Drive, Boulder Junction, Wisconsin 54512, USA Micheal S. Allen Professor, Fisheries and Aquatic Sciences University of Florida 7922 NW 71st Street, PO Box 110600, Gainesville, Florida 32653, USA Section Edited by Robert Arlinghaus Professor, Humboldt-Universität zu Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries Department of Biology and Ecology of Fishes Müggelseedamm 310, 12587 Berlin, Germany James F. Kitchell A.D. Hasler Professor (Emeritus), Center for Limnology University of Wisconsin-Madison 680 North Park Street, Madison, Wisconsin 53706, USA Kai Lorenzen Professor, Fisheries and Aquatic Sciences University of Florida 7922 NW 71st Street, P.O. Box 110600, Gainesville, Florida 32653, USA Daniel E. Schindler Professor, Aquatic and Fishery Science/Department of Biology Harriett Bullitt Chair in Conservation University of Washington Box 355020, Seattle, Washington 98195, USA Carl J. Walters Professor, Fisheries Centre University of British Columbia 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada AMERICAN FISHERIES SOCIETY BETHESDA, MARYLAND 2014 A suggested citation format for this book follows. Sass, G. G., and M. S. Allen, editors. 2014. Foundations of Fisheries Science. American Fisheries Society, Bethesda, Maryland. © Copyright 2014 by the American Fisheries Society All rights reserved. Photocopying for internal or personal use, or for the internal or personal use of specific clients, is permitted by AFS provided that the appropriate fee is paid directly to Copy- right Clearance Center (CCC), 222 Rosewood Drive, Danvers, Massachusetts 01923, USA; phone 978-750-8400. -
Electronic Green Journal Volume 1, Issue 43
Electronic Green Journal Volume 1, Issue 43 Review: Ocean Recovery: A Sustainable Future for Global Fisheries? By R. Hilborn and U. Hilborn Reviewed by Byron Anderson DeKalb, Illinois, USA Hilborn, Ray and Hilborn, Ulrike. Ocean Recovery: A Sustainable Future for Global Fisheries? New York, New York, USA: Oxford University Press, 2019; xii, 196pp. ISBN: 9780198839767, hardcover, US $37.95. Managed ocean fisheries provide about half of global fish production. Fish stocks are largely dependent on fisheries management, and fish are important to global food security. While many individuals and organizations lament the decline of fish, the truth is that oceans still contain a lot of fish and fish stocks are not declining. Ocean Recovery: A Sustainable Future for Global Fisheries? by Ray Hilborn and Ulrike Hilborn presents an overview of how fisheries are managed and counters misconceptions about fisheries management, the status and sustainability of fish stocks, and the relative cost of catching fish in the ocean when compared with producing food from the land. A common misunderstanding, for example, is that overfishing causes a termination of the bounty of fish. While fish stocks can experience a temporary decline, fishing pressure subsides and stocks rebuild, though some can take years to do so. Environmental impacts of fishing are considered. For example, if a person stops eating fish, they may be likely to turn to beef, chicken, or pork, sources of food that are significantly more damaging on the environment. However, vegetarian and vegan diets are not discussed as potential alternatives to eating fish. Other topics covered include fisheries sustainability and management, recreational and fresh water fisheries, seafood certification, ecosystem-based management, and allocating fishing boundaries.