Rhbg and Rhcg, the Putative Ammonia Transporters, Are Expressed in the Same Cells in the Distal Nephron

Total Page:16

File Type:pdf, Size:1020Kb

Rhbg and Rhcg, the Putative Ammonia Transporters, Are Expressed in the Same Cells in the Distal Nephron ARTICLES J Am Soc Nephrol 14: 545–554, 2003 RhBG and RhCG, the Putative Ammonia Transporters, Are Expressed in the Same Cells in the Distal Nephron FABIENNE QUENTIN,* DOMINIQUE ELADARI,*† LYDIE CHEVAL,‡ CLAUDE LOPEZ,§ DOMINIQUE GOOSSENS,§ YVES COLIN,§ JEAN-PIERRE CARTRON,§ MICHEL PAILLARD,*† and RE´ GINE CHAMBREY* *Institut National de la Sante´et de la Recherche Me´dicale Unite´356, Institut Fe´de´ratif de Recherche 58, Universite´Pierre et Marie Curie, Paris, France; †Hoˆpital Europe´en Georges Pompidou, Assistance Publique- Hoˆpitaux de Paris, Paris, France; ‡Centre National de la Recherche Scientifique FRE 2468, Paris, France; and §Institut National de la Sante´et de la Recherche Me´dicale Unite´76, Institut National de la Transfusion Sanguine, Paris, France. Abstract. Two nonerythroid homologs of the blood group Rh RhBG expression in distal nephron segments within the cortical proteins, RhCG and RhBG, which share homologies with specific labyrinth, medullary rays, and outer and inner medulla. RhBG ammonia transporters in primitive organisms and plants, could expression was restricted to the basolateral membrane of epithelial represent members of a new family of proteins involved in am- cells. The same localization was observed in rat and mouse monia transport in the mammalian kidney. Consistent with this kidney. RT-PCR analysis on microdissected rat nephron segments hypothesis, the expression of RhCG was recently reported at the confirmed that RhBG mRNAs were chiefly expressed in CNT apical pole of all connecting tubule (CNT) cells as well as in and cortical and outer medullary CD. Double immunostaining intercalated cells of collecting duct (CD). To assess the localiza- with RhCG demonstrated that RhBG and RhCG were coex- tion along the nephron of RhBG, polyclonal antibodies against the pressed in the same cells, but with a basolateral and apical local- Rh type B glycoprotein were generated. In immunoblot experi- ization, respectively. In conclusion, RhBG and RhCG are present ments, a specific polypeptide of Mr approximately 50 kD was in a major site of ammonia secretion in the kidney, i.e., the CNT detected in rat kidney cortex and in outer and inner medulla and CD, in agreement with their putative role in ammonium membrane fractions. Immunocytochemical studies revealed transport. Ammonium is the preferred nitrogen source of bacteria, fungi, the result of NH3 diffusion, indirectly driven by (coupled to) ϩ ϩ and plants; however, in mammals, NH4 is synthesized as an active H secretion (for review, see reference 7). NH3 is end product of nitrogen and has to be eliminated. Renal excre- believed to pass freely through lipid bilayers down its concen- ϩ ϩ tion of NH4 also allows the elimination of the daily acid load, tration gradient generated by the pH gradient, whereas NH4 is provided merely by amino acid metabolism (1). Many studies orders of magnitude less permeant. However, NH may not be ϩ 3 have focused on NH4 transport mechanisms in the mamma- so lipid soluble, as its partition coefficient between chloroform lian kidney but at variance with primitive organisms, in which and water is only 0.04 (8); accordingly, some particular cell ammonium transport is mediated by the Mep/Amt (for Methyl- membranes appear to be virtually impermeable to NH3 (9,10). ammonium Permease/Ammonium Transporters) superfamily In addition, recent pieces of evidence have been provided that members (2–4), no specific ammonium transport protein has ϩ transport across cell membranes of other “freely permeant” been described (1,5). NH4 transport through mammalian cell ϩ volatile solutes such as CO2 could be accelerated by specific membranes is rather believed to occur by substitution of NH4 channel proteins (for review, see reference 11). for Hϩ or Kϩ on diverse cation transporters such as the New insight in ammonium transport mechanisms has been Naϩ/Hϩ exchangers, the Naϩ/Kϩ/2ClϪ cotransporters, and the ϩ ϩ recently provided by studies focusing on the red blood cell Na /K -ATPase (6). It has also been suggested that it could be Rhesus (Rh) proteins, the major targets of hemolytic disease of the newborn. The Rh complex is defined as the association of Received October 1, 2002. Accepted November 8, 2002. membrane polypeptides that includes the non-glycosylated Correspondence to Dr. Re´gine Chambrey, Unite´ INSERM 356, Institut de RhD and RhCE proteins, which carry the Rh antigens, and the Recherche des Cordeliers, 15 rue de l’Ecole de Me´decine, 75270 Paris Cedex RhAG glycoprotein (Rhesus associated glycoprotein), which is 06, France. Phone: 33-1-44-41-37-10; Fax: 33-1-44-41-37-17 E-mail: [email protected] required for cell surface expression of the whole complex 1046-6673/1403-0545 (12,13). Their membrane topology and the sequence homology Journal of the American Society of Nephrology between RhAG and the Mep/Amt protein family, followed by Copyright © 2003 by the American Society of Nephrology the consecutive cloning of two nonerythroid homologs, RhBG DOI: 10.1097/01.ASN.0000050413.43662.55 and RhCG, found to be expressed highly, but not exclusively, 546 Journal of the American Society of Nephrology J Am Soc Nephrol 14: 545–554, 2003 in the kidney, have raised the possibility that RhAG and its measurement. RNAs were extracted according to the technique pre- nonerythroid homologs may represent mammalian equivalents viously described (22) and briefly summarized below. Pools of tu- of Mep/Amt proteins (14–16), an hypothesis strengthened by bules were transferred with 10 ␮l of microdissection solution in 400 ␮ two functional studies strongly suggesting that RhAG and l of denaturing solution (4 M guanidium thiocyanate, 25 mM sodium ␤ RhCG could be involved in ammonium transport (17,18). citrate [pH 7.0], 0.1 M -mercaptoethanol, and 0.5% sarcosyl) con- taining 20 ␮g of yeast RNA used as carrier. After phenol-chloroform Although the recent study by Westhoff et al. (18) using Xe- extraction and isopropyl alcohol precipitation, the RNA pellets were nopus oocyte expression system concludes that RhAG protein ϩ ϩ ϩ dried under vacuum and dissolved in RNA dilution buffer (10 mM could mediate NH4 /H exchange, whether NH4 is preferen- Tris [pH 7.6], 1 mM ethylenediamine tetra-acetic acid, 2 mM dithio- tially transported by the renal Rh proteins over NH3 remains threitol, and 40 U/ml Rnasin; Promega, Madison, WI) at a dilution undetermined. We recently reported the expression of RhCG in corresponding to 1-mm tubular length or 1 glomerulus/3 ␮l of dilution the apical membrane of connecting tubule and collecting duct buffer. cells in the rat and demonstrated that RhCG was coexpressed with the Hϩ-ATPase in intercalated cells of the collecting duct (19). This localization favors the hypothesis that Rh proteins RT-PCR Analyses of mRNAs Encoding RhBG ϩ The presence of mRNAs encoding RhBG along the nephron was may mediate net NH3 diffusion through membranes, as NH4 secretion by the collecting ducts is believed to result from determined by RT-PCR. Primers were designed from the rat EST coupled Hϩ active secretion by the Hϩ-ATPase, along with (AW920339) showing homologies with the 5' coding region of human RhBG mRNA (NM_020407). NH “passive diffusion” (20). However, definitive demonstra- 3 The sense (5'-TTCACACATTTGGGGCCTACTT-3') and anti- tion of NH3 transport by the Rh proteins remains difficult sense (5'-CTGTCGGAGCGGAGTTGAAA-3') primers correspond to because of the absence of models of Rh protein inactivation bases 205 to 226 and 352 to 375 of the rat EST, respectively. and the difficulties of expressing these proteins at sufficient RT was carried out for 45 min at 45°C in a final volume of 50 ␮l level in heterologous systems of expression. in the presence of mRNA corresponding to 0.5 mm of nephron No study has rendered a complete description of the distri- segment or to 0.5 glomerulus, antisense primers (6.25 pmol) and bution along the nephron of the second renal Rh homolog, Moloney Murine Leukemia virus reverse transcriptase (200 U). RT RhBG. We therefore investigated RhBG expression from glo- was also carried out in the absence of reverse transcriptase as negative meruli down to inner medullary collecting duct cells by spe- control. ␮ cific nephron segments RT-PCR and immunohistochemically PCR was subsequently carried out in a final volume of 100 l after ␣32 ␮ by using polyclonal antibodies raised against peptides of the addition of sense primer (6.25 pmol), ( P)dCTP (5 Ci/sample; 6000 Ci/mmol), and Taq Polymerase (1.25 U). Samples were submit- Rh type B glycoprotein. ted to 31 cycles of three temperature steps: 95°C for 30 s, 56°C for 30 s, and 72°C for 1 min. During the final cycle, the elongation step Materials and Methods lasted 5 min. Animals Aliquots of 16 ␮l of each RT-PCR sample were electrophoresed Experiments were performed on male Sprague-Dawley rats weigh- through 2% agarose slab gels. The gels were fixed in 10% acetic acid, ing 200 to 300 g or on male mice (Iffa-Credo, L’Arbresle, France). All dried under vacuum at 70°C, and submitted to PhosphorImager (Mo- animals had access to a standard laboratory diet and water ad libitum. lecular Dynamics) to determine the intensity of the signal. For each Animals were anesthetized with intraperitoneal injection of sodium animal and each experiment, the signal intensity (arbitrary units) of pentobarbital, 5 mg/100 g body wt. the different samples was expressed as percent of the signal detected in the CCD. Results are presented as mean Ϯ SEM from different animals. Isolation of Nephron Segments and RNA Extraction The left kidney was perfused with microdissection solution (see composition below) containing 0.16% (wt/vol) collagenase (Serva, Antibodies Heidelberg, Germany). The microdissected solution was prepared Two rabbit polyclonal antibodies were raised against the Rh type B from sterile Hank’s solution (Eurobio, France) supplemented with 1 glycoprotein.
Recommended publications
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20
    Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L
    [Show full text]
  • The Role of the Renal Ammonia Transporter Rhcg in Metabolic Responses to Dietary Protein
    BASIC RESEARCH www.jasn.org The Role of the Renal Ammonia Transporter Rhcg in Metabolic Responses to Dietary Protein † † † Lisa Bounoure,* Davide Ruffoni, Ralph Müller, Gisela Anna Kuhn, Soline Bourgeois,* Olivier Devuyst,* and Carsten A. Wagner* *Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and †Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ABSTRACT High dietary protein imposes a metabolic acid load requiring excretion and buffering by the kidney. Impaired acid excretion in CKD, with potential metabolic acidosis, may contribute to the progression of CKD. Here, we investigated the renal adaptive response of acid excretory pathways in mice to high- protein diets containing normal or low amounts of acid-producing sulfur amino acids (SAA) and examined how this adaption requires the RhCG ammonia transporter. Diets rich in SAA stimulated expression of + enzymes and transporters involved in mediating NH4 reabsorption in the thick ascending limb of the loop of Henle. The SAA-rich diet increased diuresis paralleled by downregulation of aquaporin-2 (AQP2) water + channels. The absence of Rhcg transiently reduced NH4 excretion, stimulated the ammoniagenic path- 2 way more strongly, and further enhanced diuresis by exacerbating the downregulation of the Na+/K+/2Cl cotransporter (NKCC2) and AQP2, with less phosphorylation of AQP2 at serine 256. The high protein acid load affected bone turnover, as indicated by higher Ca2+ and deoxypyridinoline excretion, phenomena exaggerated in the absence of Rhcg. In animals receiving a high-protein diet with low SAA content, the + kidney excreted alkaline urine, with low levels of NH4 and no change in bone metabolism.
    [Show full text]
  • Cloning and Functional Characterization of Putative Heavy Metal Stress Responsive (Echmr) Gene from Eichhornia Crassipes (Solm L.)
    Cloning and Functional Characterization of Putative Heavy Metal Stress responsive (Echmr) gene from Eichhornia crassipes (Solm L.) A thesis submitted to INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI For the award of the degree of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By GANESH THAPA Department of Biotechnology Indian Institute of Technology Guwahati December 2012 INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF BIOTECHNOLOGY STATEMENT I hereby declare that the work presented in this thesis is original and was obtained from the studies undertaken by me in the Department of Biotechnology, Indian Institute of Technology Guwahati, India, under the supervision of Prof. Lingaraj Sahoo. As per the general norms of reporting research findings, due acknowledgements have been made wherever the research findings of other researchers have been cited in this thesis. Ganesh Thapa Indian Institute of Technology Guwahati, Guwahati December 31st, 2012 TH-1156_08610609 DEPARTMENT OF BIOTECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI-781 039 _____________________________________________________________________ CERTIFICATE This is to certify that the work presented in the form of a thesis in fulfillment of the requirement for the award of the Ph.D degree of The Indian Institute of Technology Guwahati by Ganesh Thapa is his original work. The matter presented in this thesis incorporates the findings of independent research work carried out by the researcher himself. The entire research work and the thesis have been built up under my supervision. The matter contained in this thesis has not been submitted elsewhere for the award of any other degree. CERTIFIED Date: 31st Dec. 2012 Prof. Lingaraj Sahoo (Thesis Supervisor) Department of Biotechnology Indian Institute of Technology Guwahati Guwahati- 781 039 Assam, INDIA TH-1156_08610609 .……….
    [Show full text]
  • Fabbri Et Al. Whole Genome Analysis and Micrornas Regulation in Hepg2 Cells Exposed to Cadmium Supplementary Data
    Fabbri et al. Whole Genome Analysis and MicroRNAs Regulation in HepG2 Cells Exposed to Cadmium Supplementary Data Tab. S1: KEGG enrichment for downregulated genes Genes identified in Figure 1 were analyzed by DAVID for associations with particular KEGG pathways. KEGG Entry is KEGG identifier, Name is name of the KEGG pathway, Genes shows the number of genes associated with the specific pathway, the PValue refers to how significant an association a particular KEGG pathway has with the gene list. KEGG Entry Name Genes PValue hsa04610 Complement and coagulation cascades 22 1.11E-14 hsa00260 Glycine, serine and threonine metabolism 11 8.50E-08 hsa00071 Fatty acid metabolism 11 9.41E-07 hsa00650 Butanoate metabolism 9 1.89E-05 hsa00100 Steroid biosynthesis 7 2.09E-05 hsa00280 Valine, leucine and isoleucine degradation 10 2.47E-05 hsa00380 Tryptophan metabolism 9 8.40E-05 hsa00330 Arginine and proline metabolism 10 1.16E-04 hsa00900 Terpenoid backbone biosynthesis 6 1.46E-04 hsa00980 Metabolism of xenobiotics by cytochrome P450 10 2.71E-04 hsa00010 Glycolysis / Gluconeogenesis 10 2.71E-04 hsa00982 Drug metabolism 10 3.98E-04 hsa03320 PPAR signaling pathway 10 7.98E-04 hsa00620 Pyruvate metabolism 7 0.003185725 hsa00561 Glycerolipid metabolism 7 0.005184764 hsa00640 Propanoate metabolism 6 0.005876295 hsa00910 Nitrogen metabolism 5 0.009266837 hsa00480 Glutathione metabolism 7 0.009722623 hsa04950 Maturity onset diabetes of the young 5 0.012498995 hsa00903 Limonene and pinene degradation 4 0.013441968 hsa00680 Methane metabolism 3 0.018538005 hsa00120 Primary bile acid biosynthesis 4 0.01958794 hsa00340 Histidine metabolism 5 0.020928876 hsa00310 Lysine degradation 6 0.022199526 hsa00250 Alanine, aspartate and glutamate metabolism 5 0.026189764 hsa00410 beta-Alanine metabolism 4 0.04583419 hsa01040 Biosynthesis of unsaturated fatty acids 4 0.04583419 ALTEX, 2/12 SUPPL., 1 FABBRI ET AL .
    [Show full text]
  • The Genetic Landscape of the Human Solute Carrier (SLC) Transporter Superfamily
    Human Genetics (2019) 138:1359–1377 https://doi.org/10.1007/s00439-019-02081-x ORIGINAL INVESTIGATION The genetic landscape of the human solute carrier (SLC) transporter superfamily Lena Schaller1 · Volker M. Lauschke1 Received: 4 August 2019 / Accepted: 26 October 2019 / Published online: 2 November 2019 © The Author(s) 2019 Abstract The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual diferences in drug efcacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identifed, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conserva- tion, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional efects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identifed in a single population.
    [Show full text]
  • Supplementary Methods
    Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions.
    [Show full text]
  • Characterization of Centrally Expressed Solute Carriers
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215 Characterization of Centrally Expressed Solute Carriers Histological and Functional Studies with Transgenic Mice SAHAR ROSHANBIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9555-8 UPPSALA urn:nbn:se:uu:diva-282956 2016 Dissertation presented at Uppsala University to be publicly examined in B:21, Husargatan. 75124 Uppsala, Uppsala, Friday, 3 June 2016 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Biträdande professor David Engblom (Institutionen för klinisk och experimentell medicin, Cellbiologi, Linköpings Universitet). Abstract Roshanbin, S. 2016. Characterization of Centrally Expressed Solute Carriers. Histological and Functional Studies with Transgenic Mice. (. His). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9555-8. The Solute Carrier (SLC) superfamily is the largest group of membrane-bound transporters, currently with 456 transporters in 52 families. Much remains unknown about the tissue distribution and function of many of these transporters. The aim of this thesis was to characterize select SLCs with emphasis on tissue distribution, cellular localization, and function. In paper I, we studied the leucine transporter B0AT2 (Slc6a15). Localization of B0AT2 and Slc6a15 in mouse brain was determined using in situ hybridization (ISH) and immunohistochemistry (IHC), localizing it to neurons, epithelial cells, and astrocytes. Furthermore, we observed a lower reduction of food intake in Slc6a15 knockout mice (KO) upon intraperitoneal injections with leucine, suggesting B0AT2 is involved in mediating the anorexigenic effects of leucine.
    [Show full text]
  • Epithelial, Metabolic and Innate Immunity Transcriptomic Signatures Differentiating the Rumen from Other Sheep and Mammalian Gastrointestinal Tract Tissues
    Edinburgh Research Explorer Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues Citation for published version: Xiang, R, Oddy, VH, Archibald, AL, Vercoe, PE & Dalrymple, BP 2016, 'Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues', PeerJ, vol. 4, e1762. https://doi.org/10.7717/peerj.1762 Digital Object Identifier (DOI): 10.7717/peerj.1762 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PeerJ Publisher Rights Statement: © 2016 Xiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • HOMEOSTASIS and TOXICOLOGY of ESSENTIAL METALS This Is Volume 31A in the FISH PHYSIOLOGY Series Edited by Chris M
    HOMEOSTASIS AND TOXICOLOGY OF ESSENTIAL METALS This is Volume 31A in the FISH PHYSIOLOGY series Edited by Chris M. Wood, Anthony P. Farrell and Colin J. Brauner Honorary Editors: William S. Hoar and David J. Randall A complete list of books in this series appears at the end of the volume HOMEOSTASIS AND TOXICOLOGY OF ESSENTIAL METALS Edited by CHRIS M. WOOD Department of Biology McMaster University Hamilton, Ontario Canada ANTHONY P. FARRELL Department of Zoology and Faculty of Land and Food Systems The University of British Columbia Vancouver, British Columbia Canada COLIN J. BRAUNER Department of Zoology The University of British Columbia Vancouver, British Columbia Canada AMSTERDAM BOSTON HEIDELBERG LONDON OXFORD NEW YORK PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First edition 2012 Copyright r 2012 Elsevier Inc. All rights reserved Cover Image Cover image from figure 1 in Paquin, P.R., Gorsuch, J.W., Apte, S., Batley, G.E., Bowles, K.C., Campbell, P.G.C., Delos, C.G., Di Toro, D.M., Dwyer, R.L., Galvez, F., Gensemer, R.W., Goss, G.G., Hogstrand, C., Janssen, C.R., McGeer, J.C., Naddy, R.B., Playle, R.C., Santore, R.C., Schneider, U., Stubblefield, W.A., Wood, C.M., and Wu, K.B. (2002a). The biotic ligand model: a historical overview. Comp. Biochem. Physiol. 133C, 3-35. Copyright Elsevier 2002.
    [Show full text]
  • Transporters
    Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences,
    [Show full text]