Ht2009-88060

Total Page:16

File Type:pdf, Size:1020Kb

Ht2009-88060 Proceedings HT 2009 2009 ASME Summer Heat Transfer Conference July 19-23, 2009, San Francisco, California USA HT2009-88060 A BRIEF HISTORY OF THE T4 RADIATION LAW John Crepeau University of Idaho Department of Mechanical Engineering PO Box 440902 Moscow, ID 83844-0902 USA ABSTRACT he combined his Displacement Law with the T4 law to give a Since the 1700s, natural philosophers understood that heat blackbody spectrum which was accurate over some ranges, but exchange between two bodies was not precisely linearly diverged in the far infrared. dependent on the temperature difference, and that at high Max Planck, at the University of Berlin, built on temperatures the discrepancy became greater. Over the years, Wien’s model but, as Planck himself stated, “the energy of many models were developed with varying degrees of success. radiation is distributed in a completely irregular manner among The lack of success was due to the difficulty obtaining accurate the individual partial vibrations...” This “irregular” or discrete experimental data, and a lack of knowledge of the fundamental treatment of the radiation became the basis for quantum mechanisms underlying radiation heat exchange. Josef Stefan, mechanics and a revolution in physics. of the University of Vienna, compiled data taken by a number This paper will present brief biographies of the four of researchers who used various methods to obtain their data, pillars of the T4 radiation law, Stefan, Boltzmann, Wien and and in 1879 proposed a unique relation to model the Planck, and outline the methodologies used to obtain their dependence of radiative heat exchange on the temperature: the results. T4 law. Stefan’s model was met with some skepticism and was EARLY RADIATION STUDIES not widely accepted by his colleagues. His former student, Heat transfer, as a serious branch of study in physics, Ludwig Boltzmann, who by then had taken a position at the began with Sir Isaac Newton, although his contributions to this University of Graz in Austria, felt that there was some truth to subject are but a small part of his complete body of work the empirical model proposed by his mentor. Boltzmann including calculus, mechanics, optics, and of course, gravity. proceeded to show in 1884, treating electromagnetic radiation Natural philosophers of the day deduced that the heat transfer as the working fluid in a Carnot cycle, that in fact the T4 law rate was some function of the temperature, although they had was correct. difficulty distinguishing between the now commonly known By the time that Boltzmann published his modes of heat transfer: conduction, convection and radiation. thermodynamic derivation of the radiation law, physicists Early research into geological history motivated Joseph Fourier became interested in the fundamental nature of electromagnetic to study heat conduction in solids, and then extend his work to radiation and its relation to energy, specifically determining the incompressible fluids, but postponed any kind of work studying frequency distribution of blackbody radiation. Among this heat transfer in atmospheric gases. Early visual studies of group of investigators was Wilhelm Wien, working at convection heat transfer in gases were performed by Rinaldini Physikalisch-Technische Reichsanstalt in Charlottenburg, in 1657. Euler began the first mathematical theories of Berlin. He proposed a relation stating that the wavelength at convection, and Rumford later discovered convection currents which the maximum amount of radiation was emitted occurred in liquids in 1797. At the time, scientists had difficulty when the product of the wavelength and the temperature was separating conduction and convection in a fluid, and it was equal to a constant. This became known as Wien’s widely held that fluids did not conduct heat. Displacement Law, which he deduced this by imagining an Early researchers had a rudimentary knowledge of expanding and contracting cavity, filled with radiation. Later, radiation heat transfer, and believed that heat could be 1 Copyright © 2009 by ASME transferred by radiation through a vacuum. To separate Institute of Physics at the University of Vienna, a position he conduction and convection effects from radiation, it would be held until his death in 1893.[9] Among his students at the necessary to draw a vacuum between two surfaces. It was not Institute were Ludwig Boltzmann and the psychoanalyst fully understood, however, that a sufficiently low pressure had Sigmund Freud, who took physics courses as part of his to be achieved and that residual gases could affect the radiation medical studies. transfer by absorption and reradiation. One observation that became quite clear was that at high temperatures, the heat transfer was no longer simply a function of the temperature difference. What the dependence was, however, was another issue. For a more detailed early history of heat transfer, see Brush [1,2]. After some issues in trying to determine a proper temperature scale, and some fits and starts, Dulong and Petit [3] performed a series of experiments to determine the rate of radiation heat transfer between two bodies. Their paper, which was awarded a prize from the French Académie des Sciences in 1818 proposed a relation for the emissive power of radiation, Ea= μ T (1) Where a =1.077 and μ was a constant dependent on the material and size of the body. The dependence on the temperature in the exponent helped explain the higher heat transfer rates at higher temperatures, but had a significant disadvantage. There would be heat transfer even at T = 0. Nevertheless, even decades after the T4 law was discovered, a textbook stated that the Dulong and Petit law, “seems to apply with considerable accuracy through a much wider range of temperature differences than that of Newton,” and is based on “one of the most elaborate series of experiments ever Figure 1. Portrait of Josef Stefan, taken around 1885. conducted.”[4] Further experiments were performed by Tyndall [5], Provostaye and Desains [6], Draper [7] and Ericsson [8], Stefan did not feel comfortable with the Dulong and all making slight variations to the constants determined by Petit law, so he began to delve into their work more closely. Dulong and Petit, but keeping the basic structure of the model Drawing on his past experience in conduction heat transfer, he intact. This was the state-of-the-art when Josef Stefan, reconstructed their apparatus, shown in Fig. 2. Based on the Professor and Director of the Institute of Physics at the design, he estimated that a significant portion of the heat was University of Vienna began his own investigation of the lost by conduction and not by radiation, as had been presumed problem. by Dulong and Petit. By subtracting out the heat lost by conduction and reanalyzing the data, Stefan saw that the heat transfer was proportional to the temperature to the fourth JOSEF STEFAN 4 Josef Stefan (Fig. 1) was born on March 24th, 1835 in power. Figure 3 below shows the form of the T law as it first the small village of St. Peter, on the outskirts of Klagenfurt, in appeared in print in 1879.[10] Stefan didn’t realize the modern-day Austria. He was the illegitimate son of ethnic importance of his proportionality constant, A, but noted that it, Slovenes. His father Aleš was a miller and baker, and his “depend[ed] on the size and the surface of the body.” He also mother Marija Startinik was a maidservant. He began his noted that the temperature had to be given in absolute values. studies at the University of Vienna in 1853, studying physics The unusual form of his model forced Stefan to test it and mathematics, graduating in 1857. The year after his on previously published data, and he wanted to see how well it graduation, he passed his doctoral examination at the worked at temperatures higher than those used by Dulong and University of Vienna and accepted a position at the University’s Petit. He first looked at Tyndall’s work, which gave heat Physiological Institute. He was more interested in physics- transfer data on a platinum wire over a wide temperature range. related work, and was eventually offered a full professorship in After studying Tyndall’s data, Stefan wrote, “From weak red mathematics and physics in 1863, becoming the youngest heat (about 525°C) to complete white heat (about 1200°C) the person in the Austro-Hungarian empire to hold that rank. Two intensity of the radiation increases from 10.4 to 122, thus years later in 1865, he was appointed the Director of the nearly 12-fold (more precisely 11.7). The ratio of the absolute temperature 273+1200 and 273+525 raised to the fourth power 2 Copyright © 2009 by ASME gives 11.6.” [11] This result gave Stefan additional confidence His mother was Maria Pauernfeind, the daughter of a well-to- in his model, and he proceeded to test it on the data of do Salzburg merchant.[12] He was a precocious boy who early Provostaye and Desains, Draper, and Ericsson, and found that in life was taught by a private tutor, and then as the family the T4 model fit their data better than the Dulong and Petit moved to various locations throughout Austria, attended the model. local Gymnasium. He took piano lessons from the famed composer Anton Bruckner. Although the lessons ended abruptly, Boltzmann continued to play the piano for the rest of his life.[13] In 1863, Boltzmann entered the University of Vienna to study mathematics and physics, and after publishing two papers, received his Ph.D. just three years after matriculating. He arrived at the Institute of Physics not long after Stefan assumed the Directorship. Stefan was just nine years older than his student. Also at the Institute was Josef Loschmidt, an older scientist who took Boltzmann under his wing.
Recommended publications
  • Blackbody Radiation: (Vibrational Energies of Atoms in Solid Produce BB Radiation)
    Independent study in physics The Thermodynamic Interaction of Light with Matter Mirna Alhanash Project in Physics Uppsala University Contents Abstract ................................................................................................................................................................................ 3 Introduction ......................................................................................................................................................................... 3 Blackbody Radiation: (vibrational energies of atoms in solid produce BB radiation) .................................... 4 Stefan-Boltzmann .............................................................................................................................................................. 6 Wien displacement law..................................................................................................................................................... 7 Photoelectric effect ......................................................................................................................................................... 12 Frequency dependence/Atom model & electron excitation .................................................................................. 12 Why we see colours ....................................................................................................................................................... 14 Optical properties of materials: ..................................................................................................................................
    [Show full text]
  • Ludwig Boltzmann Was Born in Vienna, Austria. He Received His Early Education from a Private Tutor at Home
    Ludwig Boltzmann (1844-1906) Ludwig Boltzmann was born in Vienna, Austria. He received his early education from a private tutor at home. In 1863 he entered the University of Vienna, and was awarded his doctorate in 1866. His thesis was on the kinetic theory of gases under the supervision of Josef Stefan. Boltzmann moved to the University of Graz in 1869 where he was appointed chair of the department of theoretical physics. He would move six more times, occupying chairs in mathematics and experimental physics. Boltzmann was one of the most highly regarded scientists, and universities wishing to increase their prestige would lure him to their institutions with high salaries and prestigious posts. Boltzmann himself was subject to mood swings and he joked that this was due to his being born on the night between Shrove Tuesday and Ash Wednesday (or between Carnival and Lent). Traveling and relocating would temporarily provide relief from his depression. He married Henriette von Aigentler in 1876. They had three daughters and two sons. Boltzmann is best known for pioneering the field of statistical mechanics. This work was done independently of J. Willard Gibbs (who never moved from his home in Connecticut). Together their theories connected the seemingly wide gap between the macroscopic properties and behavior of substances with the microscopic properties and behavior of atoms and molecules. Interestingly, the history of statistical mechanics begins with a mathematical prize at Cambridge in 1855 on the subject of evaluating the motions of Saturn’s rings. (Laplace had developed a mechanical theory of the rings concluding that their stability was due to irregularities in mass distribution.) The prize was won by James Clerk Maxwell who then went on to develop the theory that, without knowing the individual motions of particles (or molecules), it was possible to use their statistical behavior to calculate properties of a gas such as viscosity, collision rate, diffusion rate and the ability to conduct heat.
    [Show full text]
  • The Philosophy and Physics of Time Travel: the Possibility of Time Travel
    University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well Honors Capstone Projects Student Scholarship 2017 The Philosophy and Physics of Time Travel: The Possibility of Time Travel Ramitha Rupasinghe University of Minnesota, Morris, [email protected] Follow this and additional works at: https://digitalcommons.morris.umn.edu/honors Part of the Philosophy Commons, and the Physics Commons Recommended Citation Rupasinghe, Ramitha, "The Philosophy and Physics of Time Travel: The Possibility of Time Travel" (2017). Honors Capstone Projects. 1. https://digitalcommons.morris.umn.edu/honors/1 This Paper is brought to you for free and open access by the Student Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Honors Capstone Projects by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact [email protected]. The Philosophy and Physics of Time Travel: The possibility of time travel Ramitha Rupasinghe IS 4994H - Honors Capstone Project Defense Panel – Pieranna Garavaso, Michael Korth, James Togeas University of Minnesota, Morris Spring 2017 1. Introduction Time is mysterious. Philosophers and scientists have pondered the question of what time might be for centuries and yet till this day, we don’t know what it is. Everyone talks about time, in fact, it’s the most common noun per the Oxford Dictionary. It’s in everything from history to music to culture. Despite time’s mysterious nature there are a lot of things that we can discuss in a logical manner. Time travel on the other hand is even more mysterious.
    [Show full text]
  • Josiah Willard Gibbs
    GENERAL ARTICLE Josiah Willard Gibbs V Kumaran The foundations of classical thermodynamics, as taught in V Kumaran is a professor textbooks today, were laid down in nearly complete form by of chemical engineering at the Indian Institute of Josiah Willard Gibbs more than a century ago. This article Science, Bangalore. His presentsaportraitofGibbs,aquietandmodestmanwhowas research interests include responsible for some of the most important advances in the statistical mechanics and history of science. fluid mechanics. Thermodynamics, the science of the interconversion of heat and work, originated from the necessity of designing efficient engines in the late 18th and early 19th centuries. Engines are machines that convert heat energy obtained by combustion of coal, wood or other types of fuel into useful work for running trains, ships, etc. The efficiency of an engine is determined by the amount of useful work obtained for a given amount of heat input. There are two laws related to the efficiency of an engine. The first law of thermodynamics states that heat and work are inter-convertible, and it is not possible to obtain more work than the amount of heat input into the machine. The formulation of this law can be traced back to the work of Leibniz, Dalton, Joule, Clausius, and a host of other scientists in the late 17th and early 18th century. The more subtle second law of thermodynamics states that it is not possible to convert all heat into work; all engines have to ‘waste’ some of the heat input by transferring it to a heat sink. The second law also established the minimum amount of heat that has to be wasted based on the absolute temperatures of the heat source and the heat sink.
    [Show full text]
  • Episode 1: Phis Wants to Be a Physicist
    Episode 1: Phis wants to be a physicist Illustration: Xia Hong Script: Xia Hong 12/2012 Phis is 14 years old. Like most kids of her age, she’s a bit anxious about finding the person inside her… She tried singing. Hmm… “You are very talented, Phis!” Her best friend Lizzy told her. Sports are also not her cup of tea… Episode 1: Phis wants to be a physicist 1 “I wish I could But why I’m short, but does height I’m very be as confident She’s smart. She’s pretty. matter?! confident! as Lizzy!” Phis And she is told her little taller than me! sister Chemi. No wonder she’s “Then I would so confident! know what I can do.” “Who says size doesn’t matter?” Phis is not convinced. “Just read the newspaper…” “It’s always good to be either really small or really big, not in between!” Even her name sounds sharp — it is the same as the Lizzy in Pride and Prejudice ! Chemi, don’t you think our names are a bit strange? Episode 1: Phis wants to be a physicist 2 Phis’s self-search reached a conclusion after a monthly Science Day event in school hosted by Ms. Allen. What I’ll show you today is the It is our fascinating pleasure world of to have quantum Prof. Lee mechanics. here. Imagine, we live in the quantum world. Quantum We have to comply to its rules, and behave very We no longer have a differently from certain answer for things our normal life.
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Light and the Electromagnetic Spectrum
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave.
    [Show full text]
  • Arxiv:Quant-Ph/0510180V1 24 Oct 2005 Einstein and the Quantum
    TIFR/TH/05-39 27.9.2005 Einstein and the Quantum Virendra Singh Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005, India Abstract We review here the main contributions of Einstein to the quantum theory. To put them in perspective we first give an account of Physics as it was before him. It is followed by a brief account of the problem of black body radiation which provided the context for Planck to introduce the idea of quantum. Einstein’s revolutionary paper of 1905 on light-quantum hypothesis is then described as well as an application of this idea to the photoelectric effect. We next take up a discussion of Einstein’s other contributions to old quantum theory. These include (i) his theory of specific heat of solids, which was the first application of quantum theory to matter, (ii) his discovery of wave-particle duality for light and (iii) Einstein’s A and B coefficients relating to the probabilities of emission and absorption of light by atomic systems and his discovery of radiation stimulated emission of light which provides the basis for laser action. We then describe Einstein’s contribution to quantum statistics viz Bose- Einstein Statistics and his prediction of Bose-Einstein condensation of a boson gas. Einstein played a pivotal role in the discovery of Quantum mechanics and this is briefly mentioned. After 1925 Einstein’s contributed mainly to the foundations of Quantum Mechanics. We arXiv:quant-ph/0510180v1 24 Oct 2005 choose to discuss here (i) his Ensemble (or Statistical) Interpretation of Quantum Mechanics and (ii) the discovery of Einstein-Podolsky-Rosen (EPR) correlations and the EPR theorem on the conflict between Einstein-Locality and the completeness of the formalism of Quantum Mechanics.
    [Show full text]
  • 1 Historical Background
    1 Historical Background 1.1 Introduction The purpose of this chapter is to explain how and why Planck introduced his famous quantum hypothesis and the constant h. I have added a few contributions from Einstein that are relevant for this book. We shall see that results based on the wave nature of light alternate with results based on its corpuscular nature. Eventually, it will be Planck’s constant that will bridge the gap between these two viewpoints and lead to the foundation of quantum physics, unifying the two aspects of light, and much more. But first a warning! This chapter is difficult to read because we are no longer used to thinking and reasoning along the same lines as our prede- cessors. Still, I think that it is of interest to follow the chain that started with Kirchhoff’s second law and ended with Planck’s hypothesis of quan- tized emission of radiation, using the tools available in their time. It gives a flavor of what physics was at that time. It also shows how much we have progressed since then. 1.2 Kirchhoff (1859) 1.2.1 The Birth of Spectroscopy The physicist Kirchhoff1 was collaborating with the chemist Bunsen2 (Fig. 1.1). Out of this collaboration emerged the science of spectroscopy. An early discovery was the phenomenon of spectral line inversion. The experiment is displayed schematically in Fig. 1.2. 1Gustav Robert Kirchhoff (b. Königsberg, 1824; d. Berlin, 1887). 2Robert Wilhelm Bunsen (b. Göttingen, 1811; d. Heidelberg, 1899). Nonlinear Optics: An Analytic Approach. Paul Mandel Copyright © 2010 Wiley-VCH Verlag GmbH & Co.
    [Show full text]
  • 03. Entropy: Boltzmann, Gibbs, Shannon
    03. Boltzmann Entropy, Gibbs Entropy, Shannon Information. I. Entropy in Statistical Mechanics. • Goal: To explain the behavior of macroscopic systems in terms of the dynamical laws governing their microscopic consituents. - In particular: To provide a micro-dynamical explanation of the 2nd Law. 1. Boltzmann's Approach. • Consider different "macrostates" of a gas: Ludwig Boltzmann (1844-1906) • Why does the gas prefer to be in the Thermodynamic equilibrium macrostate = constant thermodynamic properties equilibrium macrostate (last one)? (temperature, volume, pressure, etc.) • Suppose the gas consists of N identical particles governed by Hamilton's equations of motion (the micro-dynamics). Def. 1. A microstate X of a gas is a specification of the position (3 values) and momentum (3 values) for each of its N particles. Let Ω = phase space = 6N-dim space of all possible microstates. Let ΩE = region of Ω that consists of all microstates with constant energy E. • Ω • E • Hamiltonian dynamics • maps initial microstate • • X to final microstate X . • • i f Xf Xi • Can 2nd Law be • explained by recourse to • • • this dynamics? • • Def. 2. A macrostate Γ of a gas is a specification of the gas in terms of macroscopic properties (pressure, temperature, volume, etc.). • Relation between microstates and macrostates: Macrostates supervene on microstates! - To each microstate there corresponds exactly one macrostate. - Many distinct microstates can correspond to the same macrostate. • So: ΩE is partitioned into a finite number of regions corresponding to macrostates, with each microstate X belonging to one macrostate Γ(X). • • • ΩE microstates • • Γ(X) • • • • macrostate • X • • • • • • • • • Boltzmann's Claim: The equilibrium macrostate Γeq is vastly larger than any other macrostate (so it contains the vast majority of possible microstates).
    [Show full text]
  • Chapter 1 Blackbody Radiation
    Chapter 1 Blackbody Radiation Experiment objectives: explore radiation from objects at certain temperatures, commonly known as \blackbody radiation"; make measurements testing the Stefan-Boltzmann law in high- and low-temperature ranges; measure the inverse-square law for thermal radiation. Theory A familiar observation to us is that dark-colored objects absorb more thermal radiation (from the sun, for example) than light-colored objects. You may have also observed that a good absorber of radiation is also a good emitter (like dark-colored seats in an automobile). Although we observe thermal radiation (\heat") mostly through our sense of touch, the range of energies at which the radiation is emitted can span the visible spectrum (thus we speak of high-temperature objects being \red hot" or \white hot"). For temperatures below about 600◦C, however, the radiation is emitted in the infrared, and we cannot see it with our eyes, although there are special detectors (like the one you will use in this lab) that can measure it. An object which absorbs all radiation incident on it is known as an \ideal blackbody". In 1879 Josef Stefan found an empirical relationship between the power per unit area radiated by a blackbody and the temperature, which Ludwig Boltzmann derived theoretically a few years later. This relationship is the Stefan-Boltzmann law: S = σT 4 (1.1) where S is the radiated power per unit area (W=m2), T is the temperature (in Kelvins), and σ = 5:6703 × 10−8W=m2K4 is the Stefan's constant. Most hot, opaque objects can be approximated as blackbody emitters, but the most ideal blackbody is a closed volume (a cavity) with a very small hole in it.
    [Show full text]
  • Jožef Stefan, Master of Transport Phenomena
    JOŽEF STEFAN MASTER OF TRANSPORT PHENOMENA I J. Strnad - Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenija - DOI: 10.1051/epn/2011201 Jožef Stefan is famous primarily for the Stefan-Boltzmann radiation law. But this remarkable physicist made original contributions in all fields of physics: fluid flow, mechanical oscillations, polarization of light, double refraction, interference and wavelength measurements. He also measured the heat conductivity of gases. He was among the few physicists who promoted Maxwell's electrodynamics theory. n Stefan's life there are two distinct periods. gymnasium and in 1853 he went to the University of ᭡ Jožef stefan During the first Stefan followed many interests Vienna to study mathematics and physics. In his youth he (1835-1893) including literature, whilst the second was devoted loved to sing and took part in choirs which he also organi - I entirely to physics. Stefan was a Slovenian who zed. Under the tutorship of his teacher and together with achieved his scientific successes in Vienna as a citizen of his schoolmates he founded a hand-written Slovenian Austria (aer 1867 Austria-Hungary). literary journal. He wrote poems for it, which were later Jožef Stefan (Fig. 1) was born on March 24, 1835 at St. published in Slovenian journals appearing in Austria. He Peter, nowadays part of Celovec (Klagenfurt) [1]-[5]. His did not overestimate the value of his poems, but he could teachers soon noticed his talents. In 1845 he entered the well have become a Slovenian poet had he not chosen ᭤ Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2011201 EPN 42/2 17 History JoŽEf stEfaN ᭤ fig.
    [Show full text]