Lecture 3 Electron and Hole Transport in Semiconductors Review

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 3 Electron and Hole Transport in Semiconductors Review Lecture 3 Electron and Hole Transport in Semiconductors In this lecture you will learn: • How electrons and holes move in semiconductors • Thermal motion of electrons and holes • Electric current via drift • Electric current via diffusion • Semiconductor resistors ECE 315 – Spring 2005 – Farhan Rana – Cornell University Review: Electrons and Holes in Semiconductors holes + electrons + + As Donor A Silicon crystal lattice + impurity + As atoms + ● There are two types of mobile charges in semiconductors: electrons and holes In an intrinsic (or undoped) semiconductor electron density equals hole density ● Semiconductors can be doped in two ways: N-doping: to increase the electron density P-doping: to increase the hole density ECE 315 – Spring 2005 – Farhan Rana – Cornell University 1 Thermal Motion of Electrons and Holes In thermal equilibrium carriers (i.e. electrons or holes) are not standing still but are moving around in the crystal lattice because of their thermal energy The root-mean-square velocity of electrons can be found by equating their kinetic energy to the thermal energy: 1 1 m v 2 KT 2 n th 2 KT vth mn In pure Silicon at room temperature: 7 vth ~ 10 cm s Brownian Motion ECE 315 – Spring 2005 – Farhan Rana – Cornell University Thermal Motion of Electrons and Holes In thermal equilibrium carriers (i.e. electrons or holes) are not standing still but are moving around in the crystal lattice and undergoing collisions with: • vibrating Silicon atoms • with other electrons and holes • with dopant atoms (donors or acceptors) and other impurity atoms Mean time between collisions = c In between two successive collisions electrons (or holes) move with an average velocity which is called the thermal velocity = vth 12 In pure Silicon, c 0.110 s 0.1 ps 7 vth 10 cm s Brownian Motion Mean distance traveled between collisions is called the mean free path vth c In pure Silicon, 107 0.11012 10-6 cm 0.01m ECE 315 – Spring 2005 – Farhan Rana – Cornell University 2 Drift: Motion of Electrons Under an Applied Electric Field Silicon slab E L V E L +-V • Force on an electron because of the electric field = Fn = -qE • The electron moves in the direction opposite to the applied field with a constant drift velocity equal to vdn • The electron drift velocity vdn is proportional to the electric field strength vdn E vdn n E cm2 • The constant n is called the electron mobility. It has units: cm2 V - s • In pure Silicon, 1500 n V - s ECE 315 – Spring 2005 – Farhan Rana – Cornell University Drift: Motion of Holes Under an Applied Electric Field Silicon slab E L V E L +-V • Force on a hole because of the electric field = Fp = qE • The hole moves in the direction of the applied field with a constant drift velocity equal to vdp • The hole drift velocity vdp is proportional to the electric field strength vdp E vdp p E cm2 • The constant p is called the hole mobility. It has units: cm2 V - s • In pure Silicon, 500 p V - s ECE 315 – Spring 2005 – Farhan Rana – Cornell University 3 Derivation of Expressions for Mobility Electrons: Force on an electron because of the electric field Fn qE F q E Acceleration of the electron a n mn mn Since the mean time between collisions is c , the acceleration lasts only for a time period of c before a collision completely destroys electron’s velocity q c So in time c electron’s velocity reaches a value a c E mn q c This is the average drift velocity of the electron, i.e. vdn E mn q c Comparing with v dn n E we get, n mn Holes: q c Similarly for holes one gets, p mp Special note: Masses of electrons and holes (mn and mp) in Solids are not the same as the mass of electrons in free space which equals 9.11031 kg ECE 315 – Spring 2005 – Farhan Rana – Cornell University Mobility Vs Doping More doping (n-type of p-type) means more frequent collisions with charged donor and acceptor impurity atoms and this lowers the carrier mobility /V-s) 2 Mobility (cm Mobility Dopant concentration (1/cm3) Note: Doping in the above figure can either be n-type or p-type ECE 315 – Spring 2005 – Farhan Rana – Cornell University 4 Drift Current Density of Electrons Consider electrons moving under an applied electric field: E vdn n E Flux Density: Flux density is the number of particles crossing a unit area surface per second It has units cm-2-s-1 Unit area surface Density: n Velocity: vdn Area Time Flux density: nvdn Volume = 1 x (vdn x 1) ECE 315 – Spring 2005 – Farhan Rana – Cornell University Drift Current Density of Electrons Electrons Drift Current Density: Check directions Electron flux density from drift n v dn E vdn Electron drift current density drift is, Jn drift Jn drift vdn n E Jn q electron flux density drift q n vdn q n n E Jn q n n E drift Coulombs Amps Jn has units: cm2 - s cm2 ECE 315 – Spring 2005 – Farhan Rana – Cornell University 5 Drift Current Density of Holes Holes Drift Current Density: Check directions The hole drift current density is J drift , p E drift v Jqp hole flux density dp drift qpvdp qp p E Jp vdp p E drift Jp q p p E drift Coulombs Amps Jp has units: cm2 - s cm2 ECE 315 – Spring 2005 – Farhan Rana – Cornell University Conductivity and Resistivity Total Drift Current Density: drift drift drift The total drift current density J is the sum of J n and Jp drift drift drift J Jn Jp q n n p p E E The quantity is the conductivity of the semiconductor: q n n p p Conductivity describes how much current flows when an electric field is applied. Another related quantity is the resistivity which is the inverse of the conductivity, 1 Units of conductivity are: Ohm-1-cm-1 or -1-cm-1 or S-cm-1 Units of resistivity are: Ohm-cm or -cm or S-1-cm ECE 315 – Spring 2005 – Farhan Rana – Cornell University 6 Example: A Semiconductor Resistor Silicon slab For a resistor we know that, V I 1 R L - V We also know that, + Area A I Jdrift A E A I V A A V 2 L L L L 1 1 2 R where q n n p p A A Lessons: • Knowing electron and hole densities and mobilities, one can calculate the electrical resistance of semiconductors • n-doping or p-doping can be used to change the conductivity of semiconductors by orders of magnitudes ECE 315 – Spring 2005 – Farhan Rana – Cornell University Diffusion Diffusion of ink in a glass beaker Why does diffusion happen? ECE 315 – Spring 2005 – Farhan Rana – Cornell University 7 Diffusion and Diffusivity There is another mechanism by which current flows in semiconductors ……. • Suppose the electron density inside a semiconductor is not uniform in space, as shown below n(x) electron flux in +x direction electron flux in -x direction d nx slope dx x • Since the electrons move about randomly in all directions (Brownian motion), as time goes on more electrons will move from regions of higher electron density to regions of lower electron density than the electrons that move from regions of lower electron density to regions of higher electron density d nx • Net electron flux density in +x direction dx d nx D n dx 2 -1 • The constant Dn is called the diffusivity of electrons (units: cm -s ) ECE 315 – Spring 2005 – Farhan Rana – Cornell University Diffusion Current Density Electrons Diffusion Current Density: d nx Check directions Electron flux density from diffusion Dn dx nx diff Electron diffusion current density J n is, diff x Jn q electron flux density d nx Elec. flux q Dn dx diff Jn Holes Diffusion Current Density: d px Check directions Hole flux density from diffusion Dp dx px diff Hole diffusion current density J p is, diff x Jp q hole flux d px Hole flux q Dp dx diff Jp diff diff Coulombs Amps Jn and J p has units cm2 - s cm2 ECE 315 – Spring 2005 – Farhan Rana – Cornell University 8 Einstein Relations Einstein worked on other things besides the theory of relativity…….. • We introduced two material constants related to carrier transport: 1) Mobility 2) Diffusivity •Both are connected with the transport of carriers (electrons or holes) •It turns out that their values are related by the Einstein relationships Einstein Relation for Electrons: D K T Example: n 2 In pure Silicon, n 1500 cm V - s n q 500 cm2 V - s Einstein Relation for Holes: p 2 Dp K T This implies, Dn 37.5 cm s D 12.5 cm2 s p q p • K is the Boltzman constant and its value is: 1.38x10-23 Joules K • KT has a value equal to 0.0258 Volts at room temperature (at 300 oK) q ECE 315 – Spring 2005 – Farhan Rana – Cornell University Total Electron and Hole Current Densities Total electron and hole current densities is the sum of drift and diffusive components Electrons: drift diff Jn x Jn x Jn x d nx q nx E x q D n n dx Holes: drift diff Jp x Jp x Jp x d px q px E x q D p p dx Electric currents are driven by electric fields and also by carrier density gradients ECE 315 – Spring 2005 – Farhan Rana – Cornell University 9 Thermal Equilibrium - I There cannot be any net electron current or net hole current in thermal equilibrium ……… what does this imply ?? Consider electrons first: drift diff Jn x Jn x Jn x 0 d n x q n x E x q D o 0 1 o n n dx d logn x q 1 can also be written as: o Ex dx KT dx Since the electric field is minus the gradient of the potential: Ex dx d logn x q dx We have: o dx KT dx qx KT The solution of the above differential equation is: no x constant e But what is that “constant” in the above equation ??? ECE 315 – Spring 2005 – Farhan Rana – Cornell University Thermal Equilibrium - II qx KT We have: no x constant e Note: one can only measure potential differences and not the absolute values of potentials Convention: The potential of pure intrinsic Silicon is used as the reference value and assumed to be equal to zero.
Recommended publications
  • Room Temperature Ultrahigh Electron Mobility and Giant Magnetoresistance in an Electron-Hole-Compensated Semimetal Luptbi
    High Electron Mobility and Large Magnetoresistance in the Half-Heusler Semimetal LuPtBi Zhipeng Hou1,2, Wenhong Wang1,*, Guizhou Xu1, Xiaoming Zhang1, Zhiyang Wei1, Shipeng Shen1, Enke Liu1, Yuan Yao1, Yisheng Chai1, Young Sun1, Xuekui Xi1, Wenquan Wang2, Zhongyuan Liu3, Guangheng Wu1 and Xi-xiang Zhang4 1State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2College of Physics, Jilin University, Changchun 130023, China 3State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004, China 4Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Abstract Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magneto-electric devices. Here, we report on the discovery of an electron-hole-compensated half-Heusler semimetal LuPtBi that exhibits an extremely high electron mobility of up to 79000 cm2/Vs with a non-saturating positive MR as large as 3200% at 2 K. Remarkably, the mobility at 300 K is found to exceed 10500 cm2/Vs, which is among the highest values reported in three-dimensional bulk materials thus far. The clean Shubnikov-de Haas quantum oscillation observed at low temperatures and the first-principles calculations together indicate that the high electron mobility is due to a rather small effective carrier mass caused by the distinctive band structure of the crystal. Our finding provide a new approach for finding large, high-mobility MR materials by designing an appropriate Fermi surface topology starting from simple electron-hole-compensated semimetals.
    [Show full text]
  • Imperial College London Department of Physics Graphene Field Effect
    Imperial College London Department of Physics Graphene Field Effect Transistors arXiv:2010.10382v2 [cond-mat.mes-hall] 20 Jul 2021 By Mohamed Warda and Khodr Badih 20 July 2021 Abstract The past decade has seen rapid growth in the research area of graphene and its application to novel electronics. With Moore's law beginning to plateau, the need for post-silicon technology in industry is becoming more apparent. Moreover, exist- ing technologies are insufficient for implementing terahertz detectors and receivers, which are required for a number of applications including medical imaging and secu- rity scanning. Graphene is considered to be a key potential candidate for replacing silicon in existing CMOS technology as well as realizing field effect transistors for terahertz detection, due to its remarkable electronic properties, with observed elec- tronic mobilities reaching up to 2 × 105 cm2 V−1 s−1 in suspended graphene sam- ples. This report reviews the physics and electronic properties of graphene in the context of graphene transistor implementations. Common techniques used to syn- thesize graphene, such as mechanical exfoliation, chemical vapor deposition, and epitaxial growth are reviewed and compared. One of the challenges associated with realizing graphene transistors is that graphene is semimetallic, with a zero bandgap, which is troublesome in the context of digital electronics applications. Thus, the report also reviews different ways of opening a bandgap in graphene by using bi- layer graphene and graphene nanoribbons. The basic operation of a conventional field effect transistor is explained and key figures of merit used in the literature are extracted. Finally, a review of some examples of state-of-the-art graphene field effect transistors is presented, with particular focus on monolayer graphene, bilayer graphene, and graphene nanoribbons.
    [Show full text]
  • Book 2 Basic Semiconductor Devices for Electrical Engineers
    Book 2 Basic Semiconductor Devices for Electrical Engineers Professor C.R. Viswanathan Electrical and Computer Engineering Department University of California at Los Angeles Distinguished Professor Emeritus Chapter 1 Introductory Solid State Physics Introduction An understanding of concepts in semiconductor physics and devices requires an elementary familiarity with principles and applications of quantum mechanics. Up to the end of nineteenth century all the investigations in physics were conducted using Newton’s Laws of motion and this branch of physics was called classical physics. The physicists at that time held the opinion that all physical phenomena can be explained using classical physics. However, as more and more sophisticated experimental techniques were developed and experiments on atomic size particles were studied, interesting and unexpected results which could not be interpreted using classical physics were observed. Physicists were looking for new physical theories to explain the observed experimental results. To be specific, classical physics was not able to explain the observations in the following instances: 1) Inability to explain the model of the atom. 2) Inability to explain why the light emitted by atoms in an electric discharge tube contains sharp spectral lines characteristic of each element. 3) Inability to provide a theory for the observed properties in thermal radiation i.e., heat energy radiated by a hot body. 4) Inability to explain the experimental results obtained in photoelectric emission of electrons from solids. Early physicists Planck (thermal radiation), Einstein (photoelectric emission), Bohr (model of the atom) and few others made some hypothetical and bold assumptions to make their models predict the experimental results.
    [Show full text]
  • Condensed Matter Physics
    Condensed Matter Physics Crystal Structure Basic crystal structure Crystal: an infinite repeated pattern of identical groups of atoms, consisting of a basis and a lattice Basis: a group of atoms which forms the crystal structure Lattice: the three-dimensional set of points on which the basis is attached to form the crystal Primitive cell: the cell of the smallest volume which can be translated to map out all the points on the lattice. The primitive cell is not unique for a given crystal. There is always exactly one lattice point per primitive cell Conventional cell: a more convenient unit which also translates to map out the entire lattice, often a cube Wigner-Seitz primitive cell: this is a special form of the primitive cell constructed by connecting a given lattice point to all its neighbours, then drawing new lines as the mid-points of these lines 1 Lattice point group: a collection of symmetry operations which map the lattice back onto itself, such as translation, reflection, and rotation Miller indices Miller indices are an indexing system for defining planes and directions in a crystal. The method for defining them is as follows: Find the intercepts of the plane with the axes in terms of lattice constants Take the reciprocal of each intercept, then reduce the ratio to the smallest possible integer ratio A particular plane is denoted A set of planes equivalent by symmetry is denoted The direction perpendicular to is denoted by The reciprocal lattice If we have a repeating lattice we can represent the electron density by a periodic function, which we can write as a Fourier series: Where the factors of ensure that has the required periodic relation .
    [Show full text]
  • 3-July-7Pm-Resistivity-Mobility-Conductivity-Current-Density-ESE-Prelims-Paper-I.Pdf
    _____________________________________________________________________ Carrier drift Current carriers (i.e. electrons and holes) will move under the influence of an electric field because the field will exert a force on the carriers according to F = qE In this equation you must be very careful to keep the signs of E and q correct. Since the carriers are subjected to a force in an electric field they will tend to move, and this is the basis of the drift current. Figure illustrates the drift of electrons and holes in a semiconductor that has an electric field applied. In this case the source of the electric field is a battery. Note the direction of the current flow. The direction of current flow is defined for positive charge carriers because long ago, when they were setting up the signs (and directions) of the current carriers they had a 50:50 chance of getting it right. They got it wrong, and we still use the old convention! Current, as you know, is the rate of flow of charge and the equation you will have used should look like Id = nAVdq where Id = (drift) current (amperes), n = carrier density (per unit volume) A = conductor (or semiconductor) area, vd = (drift) velocity of carriers, q = carrier charge (coulombs) which is perfectly valid. However, since we are considering charge movement in an electric field it would be useful to somehow introduce the electric field into the equations. We can do this via a quantity called the mobility, where d = E In this equation: 2 -1 -1 = the drift mobility (often just called the mobility) with units of cm V s -1 E = the electric field (Vcm ) We know that the conduction electrons are actually moving around randomly in the metal, but we will assume that as a result of the application of the electric field Ex, they all acquire a net velocity in the x direction.
    [Show full text]
  • Carrier Concentrations
    2 Numerical Example: Carrier Concentrations 15 -3 Donor concentration: Nd = 10 cm Thermal equilibrium electron concentration: ≈ 15 –3 no Nd = 10 cm Thermal equilibrium hole concentration: 2 2 ⁄ ≈2 ⁄ ()10 –3 ⁄ 15 –3 5 –3 po =ni no ni Nd ==10 cm 10 cm 10 cm Silicon doped with donors is called n-type and electrons are the majority carriers. Holes are the (nearly negligible) minority carriers. EECS 105 Fall 1998 Lecture 2 Doping with Acceptors Acceptors (group III) accept an electron from the lattice to fill the incomplete fourth covalent bond and thereby create a mobile hole and become fixed negative charges. Example: Boron. B– + mobile hole and later trajectory immobile negatively ionized acceptor -3 Acceptor concentration is Na (cm ), we have Na >> ni typically and so: one hole is added per acceptor: po = Na equilibrium electron concentration is:: 2 no = ni / Na EECS 105 Fall 1998 Lecture 2 Compensation Example shows Nd > Na positively ionized donors + + As As B– − negatively ionized acceptor mobile electron and trajectory ■ Applying charge neutrality with four types of charged species: ρ () ===– qno ++qpo qNd – qNa qpo–no+Nd–Na 0 2 we can substitute from the mass-action law no po = ni for either the electron concentration or for the hole concentration: which one is the majority carrier? answer (not surprising): Nd > Na --> electrons Na > Nd --> holes EECS 105 Fall 1998 Lecture 2 Carrier Concentrations in Compensated Silicon ■ For the case where Nd > Na, the electron and hole concentrations are: 2 n ≅ ≅ i no Nd – Na and po ------------------- Nd – Na ■ For the case where Na > Nd, the hole and electron concentrations are: 2 n ≅ ≅ i p o N a – N d and n o ------------------- N a – N d Note that these approximations assume that | Nd - Na|>> ni, which is nearly always true.
    [Show full text]
  • LECTURE 18 – Pn DIODE Devices the Pn Junction the First Device We
    LECTURE 18 – pn DIODE Devices The pn Junction The first device we will look at is the pn diode. Junction Formation Thought experiment - consider what happens if n and p type semiconductor samples are placed together. electrons + - n + - p + - holes uncompensated donors uncompensated acceptors (stuck in lattice) metallurgical (stuck in lattice) junction Due to diffusion we have two effects: • electrons pour out of n-type material, leaving behind uncompensated donors (+ ions) • holes pour out of p-type material, leaving behind uncompensated acceptors (- ions) These electrons and holes then recombine, producing a region depleted of free carriers, leaving only fixed charges (ionized donors and acceptors). Lecture 18: pn Diode September, 2000 1 The diffusion process can not continue indefinitely as the space charge creates an electric field that opposes the diffusion of majority carriers (electrons in n-type and holes in p-type), though such diffusion is not prevented altogether. W depletion region n + - p + - ε built in electric field The electric field will sweep minority carriers (holes in n- type and electrons in p-type) across the junction so that there is a drift current of electrons from the p- to the n-type side and of holes from the n- to the p-type side which is in the opposite direction to the diffusion current. The junction field builds up until these two current flows are equal and equilibrium is achieved (no net current flow). It is a basic result of thermodynamics that in equilibrium the Fermi energy must be the same throughout the system. The induced electric field establishes a contact potential (φ) between the two regions and the energy bands of the p-type side are displaced relative to those of the n-type side.
    [Show full text]
  • HIGHER PHYSICS Electricity
    HIGHER PHYSICS Electricity http://blog.enn.com/?p=481 GWC Revised Higher Physics 12/13 1 HIGHER PHYSICS a) MONITORING and MEASURING A.C. Can you talk about: • a.c. as a current which changes direction and instantaneous value with time. • monitoring a.c. signals with an oscilloscope, including measuring frequency, and peak and r.m.s. values. b) CURRENT, VOLTAGE, POWER and RESISTANCE Can you talk about: • Current, voltage and power in series and parallel circuits. • Calculations involving voltage, current and resistance may involve several steps. • Potential dividers as voltage controllers. c) ELECTRICAL SOURCES and INTERNAL RESISTANCE Can you talk about: • Electromotive force, internal resistance and terminal potential difference. • Ideal supplies, short circuits and open circuits. • Determining internal resistance and electromotive force using graphical analysis. 2 ! ! A.C. / D.C. Voltage (V) peak This graph displays the a.c. and d.c. potential differences required to provide rms the same power to a given component. As voltage can be seen the a.c. peak is higher than the d.c. equivalent. The d.c. equivalent is known as the root mean square voltage or Vrms. Similarly the peak current is related to the root mean square current. Time (s) Ohmʼs law still holds for both d.c. and Vpeak = √2Vrms a.c. values, therefore we can use the following equations: Ipeak = √2Irms In the U.K., the mains voltage is quoted as 230 V a.c. - This is the r.m.s. value. It also has a frequency of 50Hz. The peak voltage rises to approximately 325 V a.c.
    [Show full text]
  • ECE 340 Lecture 41 : MOSFET II
    ECE 340 Lecture 41 : MOSFET II Class Outline: •Mobility Models •Short Channel Effects •Logic Devices Things you should know when you leave… Key Questions • Why is the mobility in the channel lower than in the bulk? • Why do strong electric fields degrade channel mobility ? • What is the major difference between long channel and short channel MOSFETs? • How can I turn these into useful logic devices? M.J. Gilbert ECE 340 – Lecture 41 12/10/12 MOSFET Output Characteristics This makes sense based on what we already know about MOSFETs… For low drain voltages, the MOSFET looks like a resistor if the MOSFET is above threshold and depending on the value of VG. Now we can obtain the conductance of the channel… +++++++++++++ ++++ - - - - - - •But again, this is only valid in the linear regime. •We are assuming that VD << VG – VT. Depletion Region Channel Region M.J. Gilbert ECE 340 – Lecture 41 12/10/12 MOSFET Output Characteristics So we can describe the linear +++++++++++++ ++++ Pinch off regime, but how do we describe the VD saturation regime… - - - - - - • As the drain voltage is increased, the voltage across the oxide decreases near the drain end. • The resulting mobile charge also decreases in the channel Depletion Region Channel Region near the drain end. • To obtain an expression for the drain current in saturation, substitute in the saturation condition. M.J. Gilbert ECE 340 – Lecture 41 12/10/12 MOSFET Output Characteristics Let’s summarize the output characteristics for NMOS and PMOS… - - - - - - NMOS P-type Si + + + + + + + + + + + + + PMOS N-type Si M.J. Gilbert ECE 340 – Lecture 41 12/10/12 Mobility Models Let’s try a simple problem… For an n-channel MOSFET with a gate oxide thickness of 10 nm, VT = 0.6 V and Z =25 µm and a channel length of 1 µm.
    [Show full text]
  • Mechanism of Mobility Increase of the Two-Dimensional Electron Gas in Heterostructures Under Small Dose Gamma Irradiation A
    Mechanism of mobility increase of the two-dimensional electron gas in heterostructures under small dose gamma irradiation A. M. Kurakin, S. A. Vitusevich, S. V. Danylyuk, H. Hardtdegen, N. Klein, Z. Bougrioua, B. A. Danilchenko, R. V. Konakova, and A. E. Belyaev Citation: Journal of Applied Physics 103, 083707 (2008); View online: https://doi.org/10.1063/1.2903144 View Table of Contents: http://aip.scitation.org/toc/jap/103/8 Published by the American Institute of Physics Articles you may be interested in Gamma irradiation impact on electronic carrier transport in AlGaN/GaN high electron mobility transistors Applied Physics Letters 102, 062102 (2013); 10.1063/1.4792240 Influence of γ-rays on dc performance of AlGaN/GaN high electron mobility transistors Applied Physics Letters 80, 604 (2002); 10.1063/1.1445809 Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures Journal of Applied Physics 87, 334 (1999); 10.1063/1.371866 Annealing of gamma radiation-induced damage in Schottky barrier diodes Journal of Applied Physics 101, 054511 (2007); 10.1063/1.2435972 60 Electrical characterization of Co gamma radiation-exposed InAlN/GaN high electron mobility transistors Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, 051210 (2013); 10.1116/1.4820129 Review of radiation damage in GaN-based materials and devices Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31, 050801 (2013); 10.1116/1.4799504 JOURNAL OF APPLIED PHYSICS 103, 083707 ͑2008͒ Mechanism of mobility increase of the two-dimensional electron gas in AlGaN/GaN heterostructures under small dose gamma irradiation ͒ A.
    [Show full text]
  • Carrier Scattering, Mobilities and Electrostatic Potential in Mono-, Bi- and Tri-Layer Graphenes
    Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes Wenjuan Zhu*, Vasili Perebeinos, Marcus Freitag and Phaedon Avouris** IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA ABSTRACT The carrier density and temperature dependence of the Hall mobility in mono-, bi- and tri-layer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for mono-layer graphene, while it increases for bi- layer/tri-layer graphene. This can be explained by the different density of states in mono- layer and bi-layer/tri-layer graphenes. In mono-layer, the mobility also decreases with increasing temperature primarily due to surface polar substrate phonon scattering. In bi- layer/tri-layer graphene, on the other hand, the mobility increases with temperature because the field of the substrate surface phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in mono-, bi- and tri-layer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of mono-, bi- and tri-layer graphene. The electrostatic potential variations across the different graphene samples are extracted. I. INTRODUCTION In the past few decades, the semiconductor industry has grown rapidly by offering every year higher function per cost. The major driving force of this performance increase is device scaling. However, scaling is becoming more and more difficult and costly as it approaches its scientific and technological limits.
    [Show full text]
  • A Note on the Electrochemical Nature of the Thermoelectric Power
    Eur. Phys. J. Plus (2016) 131:76 THE EUROPEAN DOI 10.1140/epjp/i2016-16076-8 PHYSICAL JOURNAL PLUS Regular Article A note on the electrochemical nature of the thermoelectric power Y. Apertet1,a, H. Ouerdane2,3, C. Goupil4, and Ph. Lecoeur5 1 Lyc´ee Jacques Pr´evert, F-27500 Pont-Audemer, France 2 Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow region 143025, Russian Federation 3 UFR Langues Vivantes Etrang`eres, Universit´e de Caen Normandie, Esplanade de la Paix 14032 Caen, France 4 Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236 Universit´e Paris Diderot, CNRS, 5 Rue Thomas Mann, 75013 Paris, France 5 Institut d’Electronique Fondamentale, Universit´e Paris-Sud, CNRS, UMR 8622, F-91405 Orsay, France Received: 16 November 2015 / Revised: 21 February 2016 Published online: 4 April 2016 – c Societ`a Italiana di Fisica / Springer-Verlag 2016 Abstract. While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system’s chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature.
    [Show full text]