HHS Public Access Author Manuscript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRANSCRIPTION REGULATION of the CLASS IV ALCOHOL DEHYDROGENASE 7 (ADH7) Sowmya Jairam Submitted to the Faculty of the University
TRANSCRIPTION REGULATION OF THE CLASS IV ALCOHOL DEHYDROGENASE 7 (ADH7) Sowmya Jairam Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University May 2014 Accepted by the Graduate Faculty, of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Howard J. Edenberg, Ph.D., Chair Brian P. Herring, Ph.D. Doctoral Committee David G. Skalnik, Ph.D. January 21, 2014 Ronald C. Wek, Ph.D. ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Howard Edenberg, for his guidance and support throughout my time in his lab. He fostered the ability to think independently by asking questions and letting me find the answers, even those I didn’t have readily, while making sure I was on the right track. I know the lessons I have learnt and the training I have received will stand me in good stead in my career. I would also like to thank all the current and former lab members at both the MS building and BRTC, particularly Jun Wang, Dr. Jeanette McClintick, Ron Jerome and Dr. Sirisha Pochareddy for their mentoring and friendship. They have been a great help and an immense support whenever I needed to get a second opinion on a technique or a research idea, and I have enjoyed discussing both scientific and non-scientific topics with them. I would like to thank my committee members Dr. Paul Herring, Dr. David Skalnik and Dr. -
Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/08/21/dmd.117.076463.DC2 http://dmd.aspetjournals.org/content/suppl/2017/06/12/dmd.117.076463.DC1 1521-009X/45/9/1044–1048$25.00 https://doi.org/10.1124/dmd.117.076463 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:1044–1048, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Age-dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver s Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder, and Bhagwat Prasad Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Missouri and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.) Received April 21, 2017; accepted June 5, 2017 ABSTRACT Hepatic cytosolic alcohol and aldehyde dehydrogenases (ADHs and the adult levels, respectively. For all proteins, the abundance steeply ALDHs) catalyze the biotransformation of xenobiotics (e.g., cyclo- increased during the first year of life, which mostly reached adult Downloaded from phosphamide and ethanol) and vitamin A. Because age-dependent levels during early childhood (age between 1 and 6 years). Only for hepatic abundance of these proteins is unknown, we quantified ADH1A protein abundance in adults (age > 18 year) was ∼40% lower protein expression of ADHs and ALDH1A1 in a large cohort of pediatric relative to the early childhood group. Abundances of ADHs and and adult human livers by liquid chromatography coupled with tandem ALDH1A1 were not associated with sex in samples with age > 1 year mass spectrometry proteomics. -
Recombinant Human ADH6 Protein Catalog Number: ATGP1564
Recombinant human ADH6 protein Catalog Number: ATGP1564 PRODUCT INPORMATION Expression system E.coli Domain 1-375aa UniProt No. P28332 NCBI Accession No. NP_001095940 Alternative Names Alcohol dehydrogenase 6, ADH-5 PRODUCT SPECIFICATION Molecular Weight 42.4 kDa (399aa) confirmed by MALDI-TOF Concentration 0.5mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 30% glycerol, 0.15M NaCl, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description ADH6, also known as alcohol dehydrogenase 6, is a member of the alcohol dehydrogenase family. Members of this family metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. This protein is expressed in the stomach as well as in the liver, and it contains a glucocorticoid response element upstream of its 5' uTR, which is a steroid hormone receptor binding site. Recombinant human ADH6 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography. 1 Recombinant human ADH6 protein Catalog Number: ATGP1564 Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSHMSTTGQ VIRCKAAILW KPGAPFSIEE VEVAPPKAKE VRIKVVATGL CGTEMKVLGS KHLDLLYPTI LGHEGAGIVE SIGEGVSTVK PGDKVITLFL PQCGECTSCL NSEGNFCIQF KQSKTQLMSD GTSRFTCKGK SIYHFGNTST FCEYTVIKEI SVAKIDAVAP LEKVCLISCG FSTGFGAAIN TAKVTPGSTC AVFGLGGVGL SVVMGCKAAG AARIIGVDVN KEKFKKAQEL GATECLNPQD LKKPIQEVLF DMTDAGIDFC FEAIGNLDVL AAALASCNES YGVCVVVGVL PASVQLKISG QLFFSGRSLK GSVFGGWKSR QHIPKLVADY MAEKLNLDPL ITHTLNLDKI NEAVELMKTG KCIRCILLL General References Yasunami M., et al. (1991) Proc. -
Variation in Protein Coding Genes Identifies Information
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. -
NIH Public Access Author Manuscript Alcohol Clin Exp Res
NIH Public Access Author Manuscript Alcohol Clin Exp Res. Author manuscript; available in PMC 2012 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Alcohol Clin Exp Res. 2011 November ; 35(11): 2008±2018. doi:10.1111/j.1530-0277.2011.01552.x. Association of alcohol dehydrogenase genes with alcohol- related phenotypes in a Native American community sample Ian R. Gizer, PhD, Howard J. Edenberg, PhD, David A. Gilder, MD, Kirk C. Wilhelmsen, MD, PhD, and Cindy L. Ehlers, PhD Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA 92037(CLE, DAG), the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (HJE), the Departments of Neurology and Genetics, University of North Carolina, Chapel Hill, NC 27599 (KCW), and the Department of Psychological Sciences, University of Missouri, Columbia, MO 65211 (IRG) Abstract Background—Previous linkage studies, including a study of the Native American population described in the present report, have provided evidence for linkage of alcohol dependence and related traits to chromosome 4q near a cluster of alcohol dehydrogenase (ADH) genes, which encode enzymes of alcohol metabolism. Methods—The present study tested for associations between alcohol dependence and related traits and 22 single nucleotide polymorphisms (SNPs) spanning the seven ADH genes. Participants included 586 adult men and women recruited from eight contiguous Native American reservations. A structured interview was used to assess DSM-III-R alcohol dependence criteria as well as a set of severe alcohol misuse symptoms and alcohol withdrawal symptoms. -
How Is Alcohol Metabolized by the Body?
Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time. -
Bioinformatic Protein Family Characterisation
Linköping studies in science and technology Dissertation No. 1343 Bioinformatic protein family characterisation Joel Hedlund Department of Physics, Chemistry and Biology Linköping, 2010 1 The front cover shows a tree diagram of the relations between proteins in the MDR superfamily (papers III–IV), excluding non-eukaryotic sequences as well as four fifths of the remainder for clarity. In total, 518 out of the 16667 known members are shown, and 1.5 cm in the dendrogram represents 10 % sequence differences. The bottom bar diagram shows conservation in these sequences using the CScore algorithm from the MSAView program (papers II and V), with infrequent insertions omitted for brevity. This example illustrates the size and complexity of the MDR superfamily, and it also serves as an illuminating example of the intricacies of the field of bioinformatics as a whole, where, after scaling down and removing layer after layer of complexity, there is still always ample size and complexity left to go around. The back cover shows a schematic view of the three-dimensional structure of human class III alcohol dehydrogenase, indicating the positions of the zinc ion and NAD cofactors, as well as the Rossmann fold cofactor binding domain (red) and the GroES-like folding core of the catalytic domain (green). This thesis was typeset using LYX. Inkscape was used for figure layout. During the course of research underlying this thesis, Joel Hedlund was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. Copyright © 2010 Joel Hedlund, unless otherwise noted. All rights reserved. Joel Hedlund Bioinformatic protein family characterisation ISBN: 978-91-7393-297-4 ISSN: 0345-7524 Linköping studies in science and technology, dissertation No. -
Identification of Novel Genes in Human Airway Epithelial Cells Associated with Chronic Obstructive Pulmonary Disease (COPD) Usin
www.nature.com/scientificreports OPEN Identifcation of Novel Genes in Human Airway Epithelial Cells associated with Chronic Obstructive Received: 6 July 2018 Accepted: 7 October 2018 Pulmonary Disease (COPD) using Published: xx xx xxxx Machine-Based Learning Algorithms Shayan Mostafaei1, Anoshirvan Kazemnejad1, Sadegh Azimzadeh Jamalkandi2, Soroush Amirhashchi 3, Seamas C. Donnelly4,5, Michelle E. Armstrong4 & Mohammad Doroudian4 The aim of this project was to identify candidate novel therapeutic targets to facilitate the treatment of COPD using machine-based learning (ML) algorithms and penalized regression models. In this study, 59 healthy smokers, 53 healthy non-smokers and 21 COPD smokers (9 GOLD stage I and 12 GOLD stage II) were included (n = 133). 20,097 probes were generated from a small airway epithelium (SAE) microarray dataset obtained from these subjects previously. Subsequently, the association between gene expression levels and smoking and COPD, respectively, was assessed using: AdaBoost Classifcation Trees, Decision Tree, Gradient Boosting Machines, Naive Bayes, Neural Network, Random Forest, Support Vector Machine and adaptive LASSO, Elastic-Net, and Ridge logistic regression analyses. Using this methodology, we identifed 44 candidate genes, 27 of these genes had been previously been reported as important factors in the pathogenesis of COPD or regulation of lung function. Here, we also identifed 17 genes, which have not been previously identifed to be associated with the pathogenesis of COPD or the regulation of lung function. The most signifcantly regulated of these genes included: PRKAR2B, GAD1, LINC00930 and SLITRK6. These novel genes may provide the basis for the future development of novel therapeutics in COPD and its associated morbidities. -
Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION -
High Diversity and No Significant Selection Signal of Human ADH1B Gene in Tibet Lu Et Al
High diversity and no significant selection signal of human ADH1B gene in Tibet Lu et al. Lu et al. Investigative Genetics 2012, 3:23 http://www.investigativegenetics.com/content/3/1/23 Lu et al. Investigative Genetics 2012, 3:23 http://www.investigativegenetics.com/content/3/1/23 RESEARCH Open Access High diversity and no significant selection signal of human ADH1B gene in Tibet Yan Lu1†, Longli Kang1,2†, Kang Hu2, Chuanchao Wang1, Xiaoji Sun1, Feng Chen2, Judith R Kidd3, Kenneth K Kidd3 and Hui Li1,2,3* Abstract Background: ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods: In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. -
ARTICLE Evidence of Positive Selection on a Class I ADH Locus
ARTICLE Evidence of Positive Selection on a Class I ADH Locus Yi Han,* Sheng Gu,* Hiroki Oota,† Michael V. Osier,‡ Andrew J. Pakstis, William C. Speed, Judith R. Kidd, and Kenneth K. Kidd The alcohol dehydrogenase (ADH) family of enzymes catalyzes the reversible oxidation of alcohol to acetaldehyde. Seven ADH genes exist in a segment of ∼370 kb on 4q21. Products of the three class I ADH genes that share 95% sequence identity are believed to play the major role in the first step of ethanol metabolism. Because the common belief that selection has operated at the ADH1B*47His allele in East Asian populations lacks direct biological or statistical evidence, we used genomic data to test the hypothesis. Data consisted of 54 single-nucleotide polymorphisms (SNPs) across the ADH clusters in a global sampling of 42 populations. Both the Fst statistic and the long-range haplotype (LRH) test provided positive evidence of selection in several East Asian populations. The ADH1B Arg47His functional polymorphism has the highest Fst of the 54 SNPs in the ADH cluster, and it is significantly above the mean Fst of 382 presumably neutral sites tested on the same 42 population samples. The LRH test that uses cores including that site and extending on both sides also gives significant evidence of positive selection in some East Asian populations for a specific haplotype carrying the ADH1B*47His allele. Interestingly, this haplotype is present at a high frequency in only some East Asian populations, whereas the specific allele also exists in other East Asian populations and in the Near East and Europe but does not show evidence of selection with use of the LRH test.