Effect of the Allelic Variants of Aldehyde
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome‐Wide Association Studies of Alcohol Dependence, DSM‐IV
UC San Diego UC San Diego Previously Published Works Title Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria. Permalink https://escholarship.org/uc/item/9rh210wx Journal Genes, brain, and behavior, 18(6) ISSN 1601-1848 Authors Lai, Dongbing Wetherill, Leah Bertelsen, Sarah et al. Publication Date 2019-07-01 DOI 10.1111/gbb.12579 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 1 February 2019 Revised: 19 April 2019 Accepted: 11 May 2019 DOI: 10.1111/gbb.12579 ORIGINAL ARTICLE Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria Dongbing Lai1 | Leah Wetherill1 | Sarah Bertelsen2 | Caitlin E. Carey3 | Chella Kamarajan4 | Manav Kapoor2 | Jacquelyn L. Meyers4 | Andrey P. Anokhin5 | David A. Bennett6 | Kathleen K. Bucholz5 | Katharine K. Chang3 | Philip L. De Jager7,8 | Danielle M. Dick9 | Victor Hesselbrock10 | John Kramer11 | Samuel Kuperman11 | John I. Nurnberger Jr1,12 | Towfique Raj2 | Marc Schuckit13 | Denise M. Scott14,15 | Robert E. Taylor16 | Jay Tischfield17 | Ahmad R. Hariri18 | Howard J. Edenberg1,19 | Arpana Agrawal5 | Ryan Bogdan3 | Bernice Porjesz4 | Alison M. Goate2 | Tatiana Foroud1 1Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana Abstract 2Department of Neuroscience, Icahn School of Genome-wide association studies (GWAS) of alcohol dependence (AD) have reliably Medicine at Mt. Sinai, New York, New York identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsis- 3 BRAIN Lab, Department of Psychological and tently located other signals, which may be partially attributable to symptom hetero- Brain Sciences, Washington University School of Medicine, St. -
The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance Over ALDH2*1 in Transduced Hela Cells
The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. Q Xiao, … , T Johnston, D W Crabb J Clin Invest. 1995;96(5):2180-2186. https://doi.org/10.1172/JCI118272. Research Article Individuals heterozygous or homozygous for the variant aldehyde dehydrogenase (ALDH2) allele (ALDH2*2), which encodes a protein differing only at residue 487 from the normal protein, have decreased ALDH2 activity in liver extracts and experience cutaneous flushing when they drink alcohol. The mechanisms by which this allele exerts its dominant effect is unknown. To study this effect, the human ALDH2*1 cDNA was cloned and the ALDH2*2 allele was generated by site-directed mutagenesis. These cDNAs were transduced using retroviral vectors into HeLa and CV1 cells, which do not express ALDH2. The normal allele directed synthesis of immunoreactive ALDH2 protein (ALDH2E) with the expected isoelectric point. Extracts of these cells contained increased aldehyde dehydrogenase activity with low Km for the aldehyde substrate. The ALDH2*2 allele directed synthesis of mRNA and immunoreactive protein (ALDH2K), but the protein lacked enzymatic activity. When ALDH2*1-expressing cells were transduced with ALDH2*2 vectors, both mRNAs were expressed and immunoreactive proteins with isoelectric points ranging between those of ALDH2E and ALDH2K were present, indicating that the subunits formed heteromers. ALDH2 activity in these cells was reduced below that of the parental ALDH2*1-expressing cells. Thus, the ALDH2*2 allele is sufficient to cause ALDH2 deficiency in vitro. Find the latest version: https://jci.me/118272/pdf The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance over ALDH2*1 in Transduced HeLa Cells Qing Xiao, * Henry Weiner,* Timothy Johnston,* and David W. -
ATAP00021-Recombinant Human ALDH1A1 Protein
ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein Product Details Summary English name Recombinant Human ALDH1A1 protein Purity >90% as determined by SDS-PAGE Endotoxin level Please contact with the lab for this information. Construction A DNA sequence encoding the human ALDH1A1 (Met1-Ser501) was fused with His tag Accession # P00352 Host E.coli Species Homo sapiens (Human) Predicted Molecular Mass 52.58 kDa Formulation Supplied as solution form in PBS pH 7.5 or lyophilized from PBS pH 7.5. Shipping In general, proteins are provided as lyophilized powder/frozen liquid. They are shipped out with dry ice/blue ice unless customers require otherwise. Stability &Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8 °C for one week . Store at -20 to -80 °C for twelve months from the date of receipt. Reconstitution Reconstitute in sterile water for a stock solution.A copy of datasheet will be provided with the products, please refer to it for details. Background Background Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), also known as Aldehyde dehydrogenase 1 (ALDH1), or Retinaldehyde Dehydrogenase 1 (RALDH1), is an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. The retinaldehyde dehydrogenase (RALDH) subfamily of ALDHs, composed of ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1, regulate development by catalyzing retinoic acid biosynthesis. The ALDH1A1 protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH1A1 also belongs to the group of corneal crystallins that Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958 ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein help maintain the transparency of the cornea. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptAm J Med Author Manuscript Genet B Neuropsychiatr Author Manuscript Genet. Author manuscript; available in PMC 2015 December 01. Published in final edited form as: Am J Med Genet B Neuropsychiatr Genet. 2014 December ; 0(8): 673–683. doi:10.1002/ajmg.b.32272. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample Qian Peng1,2,*, Ian R. Gizer3, Ondrej Libiger2, Chris Bizon4, Kirk C. Wilhelmsen4,5, Nicholas J. Schork1, and Cindy L. Ehlers6,* 1 Department of Human Biology, J. Craig Venter Institute, La Jolla, CA 92037 2 Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037 3 Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO 65211 4 Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517 5 Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 6 Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 Abstract Higher rates of alcohol use and other drug-dependence have been observed in some Native American populations relative to other ethnic groups in the U.S. Previous studies have shown that alcohol dehydrogenase (ADH) genes and aldehyde dehydrogenase (ALDH) genes may affect the risk of development of alcohol dependence, and that polymorphisms within these genes may differentially affect risk for the disorder depending on the ethnic group evaluated. We evaluated variations in the ADH and ALDH genes in a large study investigating risk factors for substance use in a Native American population. -
Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation. -
Mapping Aldehyde Dehydrogenase 1A1 Activity Using an [18F]Substrate-Based Approach Raul Pereira,[A] Thibault Gendron,[B] Chandan Sanghera,[A] Hannah E
CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online DOI: 10.1002/chem.201805473 Full Paper & Biochemistry Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18F]Substrate-Based Approach Raul Pereira,[a] Thibault Gendron,[b] Chandan Sanghera,[a] Hannah E. Greenwood,[a] Joseph Newcombe,[b, c] Patrick N. McCormick,[a] Kerstin Sander,[b] Maya Topf,[c] Erik rstad,[b] and Timothy H. Witney*[a] Abstract: Aldehyde dehydrogenases (ALDHs) catalyze the focused library of compounds evaluated, N-ethyl-6-(fluoro)- oxidation of aldehydes to carboxylic acids. Elevated ALDH N-(4-formylbenzyl)nicotinamide 4b was found to have excel- expression in human cancers is linked to metastases and lent affinity and isozyme selectivity for ALDH1A1 in vitro. poor overall survival. Despite ALDH being a poor prognostic Following 18F-fluorination, [18F]4b was taken up by colorectal factor, the non-invasive assessment of ALDH activity in vivo tumor cells and trapped through the conversion to its 18F-la- has not been possible due to a lack of sensitive and transla- beled carboxylate product under the action of ALDH. In vivo tional imaging agents. Presented in this report are the syn- positron emission tomography revealed high uptake of thesis and biological evaluation of ALDH1A1-selective chemi- [18F]4b in the lungs and liver, with radioactivity cleared cal probes composed of an aromatic aldehyde derived from through the urinary tract. Oxidation of [18F]4b, however, was N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinat- observed in vivo, which may limit the tissue penetration of ed pyridine ring either via an amide or amine linkage. -
Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/08/21/dmd.117.076463.DC2 http://dmd.aspetjournals.org/content/suppl/2017/06/12/dmd.117.076463.DC1 1521-009X/45/9/1044–1048$25.00 https://doi.org/10.1124/dmd.117.076463 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:1044–1048, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Age-dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver s Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder, and Bhagwat Prasad Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Missouri and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.) Received April 21, 2017; accepted June 5, 2017 ABSTRACT Hepatic cytosolic alcohol and aldehyde dehydrogenases (ADHs and the adult levels, respectively. For all proteins, the abundance steeply ALDHs) catalyze the biotransformation of xenobiotics (e.g., cyclo- increased during the first year of life, which mostly reached adult Downloaded from phosphamide and ethanol) and vitamin A. Because age-dependent levels during early childhood (age between 1 and 6 years). Only for hepatic abundance of these proteins is unknown, we quantified ADH1A protein abundance in adults (age > 18 year) was ∼40% lower protein expression of ADHs and ALDH1A1 in a large cohort of pediatric relative to the early childhood group. Abundances of ADHs and and adult human livers by liquid chromatography coupled with tandem ALDH1A1 were not associated with sex in samples with age > 1 year mass spectrometry proteomics. -
Expression and Characterization of Pantoea CO Dehydrogenase To
www.nature.com/scientificreports OPEN Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial Received: 31 October 2016 Accepted: 06 February 2017 waste gas for expanding the Published: 14 March 2017 versatility of CO dehydrogenase Eun Sil Choi1,2,*, Kyoungseon Min3,*, Geun-Joong Kim2, Inchan Kwon1 & Yong Hwan Kim3 Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method. Its electron acceptor spectra, optimum −1 conditions (pH 6.5 and 30 °C), and kinetic parameters (kcat of 12.97 s , Km of 0.065 mM, and specific activity of 0.86 Umg−1) were examined. Blast furnace gas (BFG) containing 20% CO, which is a waste gas from the steel-making process, was tested as a substrate for PsCODH. Even with BFG, the recombinant PsCODH retained 88.2% and 108.4% activity compared with those of pure CO and 20% CO, respectively. The results provide not only a promising strategy to utilize CO-containing industrial waste gases as cheap, abundant, and renewable resources but also significant information for further studies about cascade reactions producing value-added chemicals via CO2 as an intermediate produced by a CODH- based CO-utilization system, which would ultimately expand the versatility of CODH. Carbon monoxide (CO), which is a pollutant in the atmosphere, is massively emitted through both natural (e.g., production by plants and volcanic activity) and artificial processes (e.g., incomplete combustion of fuels and industrial processes)1–3. -
The Evolution and Population Genetics of the ALDH2 Locus: Random Genetic Drift, Selection, and Low Levels of Recombination
doi: 10.1046/j.1529-8817.2003.00060.x The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination Hiroki Oota1, Andrew J. Pakstis1, Batsheva Bonne-Tamir2, David Goldman3, Elena Grigorenko4, Sylvester L. B. Kajuna5, Nganyirwa J. Karoma5, Selemani Kungulilo6, Ru-Band Lu7, Kunle Odunsi8, Friday Okonofua9, Olga V. Zhukova10, Judith R. Kidd1 and Kenneth K. Kidd1,∗ 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New Haven, CT 06520-8005, USA 2Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 3Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA 4Department of Psychology, Yale University, New Haven, CT 06520, USA 5The Hubert Kairuki Memorial University, Dar es Salaam, Tanzania 6Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania 7Department of Psychiatry, Tri-Service General hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C. 8Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA 9Department of Obstetrics and Gynecology, Faculty of Medicine, University of Benin, Benin City, Nigeria 10N.I. Vavilov Institute of General Genetics RAS, Moscow, Russia Summary The catalytic deficiency of human aldehyde dehydrogenase 2 (ALDH2) is caused by a nucleotide substitution (G1510A; Glu487Lys) in exon 12 of the ALDH2 locus. This SNP,and four non-coding SNPs, including one in the promoter, span 40 kb of ALDH2; these and one downstream STRP have been tested in 37 worldwide populations. Only four major SNP-defined haplotypes account for almost all chromosomes in all populations. -
Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde
DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 SHORT COMMUNICATION 2 Age-dependent protein abundance of cytosolic alcohol and aldehyde 3 dehydrogenases in human liver 4 5 Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder and Bhagwat 6 Prasad 7 Downloaded from 8 Department of Pharmaceutics, University of Washington, Seattle, WA (D.K.B and B.P.) 9 Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s 10 Mercy-Kansas City, MO and School of Medicine, University of Missouri-Kansas City, Kansas dmd.aspetjournals.org 11 City, MO (R.E.P., A.G., J.S.L.) 12 at ASPET Journals on September 23, 2021 1 DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 Running title: Hepatic age-dependent ADH and ALDH abundance 2 3 Corresponding author: Bhagwat Prasad, Ph.D.; Department of Pharmaceutics, University 4 of Washington, Seattle, WA 98195, Phone: (206) 221-2295, E-mail: [email protected] 5 Number of text pages: 9 6 Number of tables: 0 7 Number of figures: 2 8 Number of references: 32 Downloaded from 9 Number of words in Abstract: 205 (250) 10 Number of words in Introduction: 419 11 Number of words in Results and Discussion: 1113 dmd.aspetjournals.org 12 13 Abbreviations: Alcohol dehydrogenases (ADHs), aldehyde dehydrogenase (ALDH), 14 multiple reaction monitoring (MRM), liquid-chromatography coupled with tandem mass at ASPET Journals on September 23, 2021 15 spectrometry (LC-MS/MS), drug-metabolizing enzyme (DME) and human liver cytosol (HLC) 16 17 2 DMD Fast Forward. -
A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. -
How Is Alcohol Metabolized by the Body?
Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.