The MDR Superfamily

Total Page:16

File Type:pdf, Size:1020Kb

The MDR Superfamily Cell. Mol. Life Sci. 65 (2008) 3879 – 3894 View metadata,1420-682X/08/243879-16 citation and similar papers at core.ac.uk Cellular and Molecular Life Sciencesbrought to you by CORE DOI 10.1007/s00018-008-8587-z provided by Springer - Publisher Connector Birkhuser Verlag, Basel, 2008 The MDR superfamily B. Perssona,b,*, J. Hedlunda and H. Jçrnvallc a IFM Bioinformatics, Linkçping University, 581 83 Linkçping (Sweden), Fax: +4613137568, e-mail: [email protected] b Dept of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm (Sweden) c Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm (Sweden) Online First 14 November 2008 Abstract. The MDR superfamily with ~350-residue ments. Subsequent recognitions now define at least 40 subunits contains the classical liver alcohol dehydro- human MDR members in the Uniprot database genase (ADH), quinone reductase, leukotriene B4 (correspondingACHTUNGRE to 25 genes when excluding close dehydrogenase and many more forms. ADH is a homologues), and in all species at least 10888 entries. dimeric zinc metalloprotein and occurs as five differ- Overall, variability is large, but like for many dehy- ent classes in humans, resulting from gene duplica- drogenases, subdivided into constant and variable tions during vertebrate evolution, the first one traced forms, corresponding to household and emerging to ~500 MYA (million years ago) from an ancestral enzyme activities, respectively. This review covers formaldehyde dehydrogenase line. Like many dupli- basic facts and describes eight large MDR families and cations at that time, it correlates with enzymogenesis nine smaller families. Combined, they have specific of new activities, contributing to conditions for substrates in metabolic pathways, some with wide emergence of vertebrate land life from osseous fish. substrate specificity, and several with little known The speed of changes correlates with function, as do functions. differential evolutionary patterns in separate seg- Keywords. Dehydrogenases, reductases, enzyme superfamily, evolution, bioinformatics. Introduction bers, while about 1000 forms belong to small clusters with 10 or fewer members each. Thus, the MDR The superfamily of MDR (medium-chain dehydro- superfamily is now showing a spread resembling the genase/reductase) proteins is formed by zinc-depend- complexity of the SDR (short-chain dehydrogenase/ACHTUNGRE ent ADHs (alcohol dehydrogenases), quionone re- reductase) superfamily [3]. This is a new characteristic ductases, leukotriene B4 dehydrogenase,ACHTUNGRE and many of MDR, not detectable until now when many data more families. The family has grown considerably in from large-scale genome projects exist. recent years, and as of October 2007 it had close to The first-characterised member was the class I type of 11000 members in the Uniprot database [1]. Dis- mammalian ADH, for which the primary structure regardingACHTUNGRE species variations, there is still considerable was reported already in 1970 [4]. Subsequently multiplicity, with at least 25 members in humans, detected MDR members included sorbitol DH [5], a excluding close homologues. Compared to an inves- crystallin, metabolic enzymes and a synaptic protein tigation five years ago [2], the total number of known [6]. The latter report also coined the term MDR [6] to MDR members in all species has increased about 10- distinguish this protein family from that of SDR with fold. Roughly half of the MDR proteins can be its typically smaller (~250 residue) subunits and no grouped into large families with hundreds of mem- metal dependence [7]. This split between two protein types, giving rise to a basic multiplicity of many activities, was seen already in the 1970s when the first * Corresponding author. data on Drosophila ADH showed subunit patterns 3880 B. Persson, J. Hedlund and H. Jçrnvall MDR proteins separate from those of the Zn-dependent ADHs [8]. We then notice a substantial decrease in number In parallel with these family distinctions deduced from already at the 99% identity level, where about 20% of whole-subunit similarities, the distribution of domain all characterised MDRs are eliminated, representing similarities, and the ancestral nucleotide binding units closely related forms or duplicates. At the 90% level, discerned from three-dimensional data [9–11] led to a we find about two-third of all members. At the 30% number of repeated sequence similarities, also seen identity level, we find 476 members, corresponding to early [12] within this whole class of DHs/reductases/ about 5% of the total number. Here we will in most kinases in general. cases find only one representative for each MDR The MDR proteins typically consist of two domains, family, and we can therefore estimate the total number where the C-terminal domain is coenzyme-binding of MDR families to be around 500. Of these families, with the ubiquitous Rossmann fold [10] of an often six- we find that only 8 have 200 or more members, and stranded parallel b-sheet sandwiched between a- therefore are the most widespread of the MDR helices on each side. The N-terminal domain is proteins. Together they represent 3165 proteins in substrate binding with a core of antiparallel b-strands the database, corresponding to about a third of all and surface-positioned a-helices, showing distant MDR forms characterised. The majority of sequence homology with the GroES structure [13]. The do- clusters (334 families) presently have 10 or fewer mains are separated by a cleft containing a deep members. pocket which accommodates the cofactor and the active site. In this report, we review the different MDR families, MDR families observe common characteristics of the members and emphasise evolutionary aspects of this superfamily. The MDR superfamily can be divided into separate families, based upon sequence similarities. For each of the 8 families corresponding to the most widespread Divergence within the MDR superfamily forms, we have derived a hidden Markov model (HMM, [15]) which can be used for subsequent Presently, there are 10888 members of the MDR database searches in order to find further members. superfamily, as judged from Uniprot entries, which We have created additional HMMs for some MDR contain the Pfam [14] domains PF00107 (zinc-binding families of special interest, for instance those with DH) and PF08240 (alcohol DH GroES-like domain). representatives from the human species. The number A number of MDR members are multi-proteins, and of currently detected members for each of these MDR some Uniprot entries contain multiple proteins. families is shown in Table 2. The largest MDR families Therefore, we decided to focus only on the MDR are currently the ADH and CAD (cinnamyl alcohol units for the subsequent comparisons. From the 10888 dehydrogenase) families. However, the description in MDR members, we could extract 9756 MDR proteins, this review reflects the current situation, and as future excluding partial sequences shorter than 250 amino genome projects and environmental sequencing proj- acid residues. In order to get an overview of the ects (e.g. [16]) will contribute to an immense increase relationships within this large superfamily, we have of structural information, the number of MDR forms clustered and counted the proteins at different and their family sizes are also expected to increase. It identity levels; i.e. at each level the MDR proteins should be noticed that the functional importance of are redundancy-reduced so that all sequences have each MDR family is not correlated with the size of the pairwise identities below the threshold of that level family. If anything, it might even be the opposite, since (Table 1). the strictest substrate specificity is often associated with housekeeping enzymes of low multiplicity (cf. Table 1. MDR members in Uniprot as of October 2007 in total and Table 3, below). Functionally, higher vertebrates have at various redundancy-reduction levels. at least 11 separate MDR activity types (Fig. 4, Level MDR domains below). Knowledge of multiplicities within the MDR super- Total 9756 family is steadily increasing (Fig. 1). In 1983, ADH 99% 7982 and YADH (now TADH) were the only MDR 90% 6593 families in the databases. In the latter half of the 60% 3005 1980s, the PDH (polyol DH) family became notice- 30% 476 able, followed by the first members of the TDH (threonine DH), QOR (quinone oxidoreductase), The numbers represent MDR domains. VAT (vesicle amine transport), ACR (acyl-CoA Cell. Mol. Life Sci. Vol. 65, 2008 Review Article 3881 Table 2. Number of members of the MDR families discussed as Highly widespread MDR families detected in the Uniprot sections Swissprot and TrEMBL with the corresponding HMMs at the stringent E-value level of 1e-100 or better. At least eight MDR families are large, each with presently more than 200 members, and in total 3165 Family Members Swissprot TrEMBL known proteins, thus corresponding to about one- ADH 931 99 832 third of the MDR superfamily members. CAD 520 35 485 LTD 427 15 413 1. The ADH family TADH 330 40 290 Based upon the present multiple sequence alignment YHDH 295 1 294 and dendrogram of all MDR forms, ADH constitutes a natural family, encompassing animal ADH, plant BPDH 229 3 226 ADH and FADH (glutathione-dependent formalde- PDH 218 18 200 hyde dehydrogenase, also known as class III ADH). TDH 215 49 166 The ADH family as an entity is also supported by our BurkDH 67 0 67 HMM analyses. The ancestral form appears to be MCAS 58 1 57 FADH, which is present in all kingdoms of life, and MECR 49 13 36 the sole form present in non-vertebrate animals [18]. VAT1 39 6 33 The dendrogram in Figure 2 may appear to suggest QOR 28 8 20 that classes II and V/VI emerged early, but the data ACR 25 4 21 for these classes are few. Disregarding the little- known forms, class I ADH from fish branches off DOIAD 16 7 6 first.
Recommended publications
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptAm J Med Author Manuscript Genet B Neuropsychiatr Author Manuscript Genet. Author manuscript; available in PMC 2015 December 01. Published in final edited form as: Am J Med Genet B Neuropsychiatr Genet. 2014 December ; 0(8): 673–683. doi:10.1002/ajmg.b.32272. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample Qian Peng1,2,*, Ian R. Gizer3, Ondrej Libiger2, Chris Bizon4, Kirk C. Wilhelmsen4,5, Nicholas J. Schork1, and Cindy L. Ehlers6,* 1 Department of Human Biology, J. Craig Venter Institute, La Jolla, CA 92037 2 Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037 3 Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO 65211 4 Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517 5 Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 6 Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 Abstract Higher rates of alcohol use and other drug-dependence have been observed in some Native American populations relative to other ethnic groups in the U.S. Previous studies have shown that alcohol dehydrogenase (ADH) genes and aldehyde dehydrogenase (ALDH) genes may affect the risk of development of alcohol dependence, and that polymorphisms within these genes may differentially affect risk for the disorder depending on the ethnic group evaluated. We evaluated variations in the ADH and ALDH genes in a large study investigating risk factors for substance use in a Native American population.
    [Show full text]
  • Transcriptomic and Genetic Associations Between Alzheimer's
    cancers Article Transcriptomic and Genetic Associations between Alzheimer’s Disease, Parkinson’s Disease, and Cancer Jaume Forés-Martos 1,2,3, Cesar Boullosa 4,†, David Rodrigo-Domínguez 5,† , Jon Sánchez-Valle 6,† , Beatriz Suay-García 2,3 , Joan Climent 2,7 , Antonio Falcó 2,3 , Alfonso Valencia 6,8, Joan Anton Puig-Butillé 9,10, Susana Puig 10,11 and Rafael Tabarés-Seisdedos 1,12,13,* 1 Biomedical Research Networking Center of Mental Health (CIBERSAM), 28029 Madrid, Spain; [email protected] 2 ESI International Chair@CEU-UCH, Universidad Cardenal Herrera-CEU, CEU Universities, San Bartolomé 55, 46115 Alfara del Patriarca, Spain; [email protected] (B.S.-G.); [email protected] (J.C.); [email protected] (A.F.) 3 Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, San Bartolomé 55, 46115 Alfara del Patriarca, Spain 4 IES Miguel Catalán, 28823 Coslada, Spain; [email protected] 5 Consorcio Hospital General de Valencia, Servicio de Medicina Interna, 46014 Valencia, Spain; [email protected] 6 Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; [email protected] (J.S.-V.); [email protected] (A.V.) 7 Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Citation: Forés-Martos, J.; Alimentos, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Boullosa, C.; Rodrigo-Domínguez, D.; 46115 Alfara del Patriarca, Spain 8 Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain Sánchez-Valle, J.; Suay-García, B.; 9 Biochemical and Molecular Genetics Service, Hospital Clínic and August Pi i Sunyer Biomedical Research Climent, J.; Falcó, A.; Valencia, A.; Institute (IDIBAPS), 08036 Barcelona, Spain; [email protected] Puig-Butillé, J.A.; Puig, S.; et al.
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Computational Exploration of the Medium-Chain Dehydrogenase / Reductase Superfamily
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY Linus J. Östberg Stockholm 2017 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2017 ©Linus J. Östberg, 2017 ISBN 978-91-7676-650-7 COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY THESIS FOR DOCTORAL DEGREE (Ph.D.) By Linus J. Östberg Principal Supervisor: Opponent: Prof. Jan-Olov Höög Prof. Jaume Farrés Karolinska Institutet Autonomous University of Barcelona Department of Medical Biochemistry and Department of Biochemistry and Biophysics Molecular Biology Co-supervisor: Examination Board: Prof. Bengt Persson Prof. Erik Lindahl Uppsala University Stockholm University Department of Cell and Molecular Biology Department of Biochemistry and Biophysics Assoc. Prof. Tanja Slotte Stockholm University Department of Ecology, Environment and Plant Sciences Prof. Elias Arnér Karolinska Institutet Department of Medical Biochemistry and Biophysics ABSTRACT The medium-chain dehydrogenase/reductase (MDR) superfamily is a protein family with more than 170,000 members across all phylogenetic branches. In humans there are 18 repre- sentatives. The entire MDR superfamily contains many protein families such as alcohol dehy- drogenase, which in mammals is in turn divided into six classes, class I–VI (ADH1–6). Most MDRs have enzymatical functions, catalysing the conversion of alcohols to aldehyde/ketones and vice versa, but the function of some members is still unknown. In the first project, a methodology for identifying and automating the classification of mammalian ADHs was developed using BLAST for identification and class-specific hidden Markov models were generated for identification.
    [Show full text]
  • Bioinformatic Protein Family Characterisation
    Linköping studies in science and technology Dissertation No. 1343 Bioinformatic protein family characterisation Joel Hedlund Department of Physics, Chemistry and Biology Linköping, 2010 1 The front cover shows a tree diagram of the relations between proteins in the MDR superfamily (papers III–IV), excluding non-eukaryotic sequences as well as four fifths of the remainder for clarity. In total, 518 out of the 16667 known members are shown, and 1.5 cm in the dendrogram represents 10 % sequence differences. The bottom bar diagram shows conservation in these sequences using the CScore algorithm from the MSAView program (papers II and V), with infrequent insertions omitted for brevity. This example illustrates the size and complexity of the MDR superfamily, and it also serves as an illuminating example of the intricacies of the field of bioinformatics as a whole, where, after scaling down and removing layer after layer of complexity, there is still always ample size and complexity left to go around. The back cover shows a schematic view of the three-dimensional structure of human class III alcohol dehydrogenase, indicating the positions of the zinc ion and NAD cofactors, as well as the Rossmann fold cofactor binding domain (red) and the GroES-like folding core of the catalytic domain (green). This thesis was typeset using LYX. Inkscape was used for figure layout. During the course of research underlying this thesis, Joel Hedlund was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. Copyright © 2010 Joel Hedlund, unless otherwise noted. All rights reserved. Joel Hedlund Bioinformatic protein family characterisation ISBN: 978-91-7393-297-4 ISSN: 0345-7524 Linköping studies in science and technology, dissertation No.
    [Show full text]
  • Morphology, Behavior, and the Sonic Hedgehog Pathway in Mouse Models of Down Syndrome
    MORPHOLOGY, BEHAVIOR, AND THE SONIC HEDGEHOG PATHWAY IN MOUSE MODELS OF DOWN SYNDROME by Tara Dutka A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2014 © 2014 Tara Dutka All Rights Reserved Abstract Down Syndrome (DS) is caused by a triplication of human chromosome 21 (Hsa21). Ts65Dn, a mouse model of DS, contains a freely segregating extra chromosome consisting of the distal portion of mouse chromosome 16 (Mmu16), a region orthologous to part of Hsa21, and a non-Hsa21 orthologous region of mouse chromosome 17. All individuals with DS display some level of craniofacial dysmorphology, brain structural and functional changes, and cognitive impairment. Ts65Dn recapitulates these features of DS and aspects of each of these traits have been linked in Ts65Dn to a reduced response to Sonic Hedgehog (SHH) in trisomic cells. Dp(16)1Yey is a new mouse model of DS which has a direct duplication of the entire Hsa21 orthologous region of Mmu16. Dp(16)1Yey’s creators found similar behavioral deficits to those seen in Ts65Dn. We performed a quantitative investigation of the skull and brain of Dp(16)1Yey as compared to Ts65Dn and found that DS-like changes to brain and craniofacial morphology were similar in both models. Our results validate examination of the genetic basis for these phenotypes in Dp(16)1Yey mice and the genetic links for these phenotypes previously found in Ts65Dn , i.e., reduced response to SHH. Further, we hypothesized that if all trisomic cells show a reduced response to SHH, then up-regulation of the SHH pathway might ameliorate multiple phenotypes.
    [Show full text]
  • Alcohol Dehydrogenase (ADH1A) Rabbit Polyclonal Antibody Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA323596 Alcohol Dehydrogenase (ADH1A) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC Recommended Dilution: ELISA: 1:2000-5000, IHC: 1:25-100 Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Fusion protein corresponding to C terminal 300 amino acids of human alcohol dehydrogenase 1A (class I), alpha polypeptide Formulation: PBS pH7.3, 0.05% NaN3, 50% glycerol Concentration: lot specific Purification: Antigen affinity purification Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: alcohol dehydrogenase 1A (class I), alpha polypeptide Database Link: NP_000658 Entrez Gene 124 Human P07327 Background: This gene encodes a member of the alcohol dehydrogenase family. The encoded protein is the alpha subunit of class I alcohol dehydrogenase, which consists of several homo- and heterodimers of alpha, beta and gamma subunits. Alcohol dehydrogenases catalyze the oxidation of alcohols to aldehydes. This gene is active in the liver in early fetal life but only weakly active in adult liver. This gene is found in a cluster with six additional alcohol dehydrogenase genes, including those encoding the beta and gamma subunits, on the long arm of chromosome 4. Mutations in this gene may contribute to variation in certain personality traits and substance dependence. Synonyms: ADH1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use.
    [Show full text]
  • Effect of the Allelic Variants of Aldehyde
    REVIEW Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations Giia-Sheun Peng1 and Shih-Jiun Yin2* 1Department of Neurology, Tri-Service General Hospital, 325 Chenggong Road Section 2, Taipei 114, Taiwan 2Department of Biochemistry, National Defense Medical Center, 161 Minchuan East Road Section 6, Taipei 114, Taiwan *Correspondence to: Tel: þ886 2 8792 3100 ext 18800; Fax: þ886 2 8792 4818; E-mail: [email protected] Date received (in revised form): 30th July 2008 Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; these polymorphisms have been shown to be the important genetic determinants in ethanol metabolism and alcoholism. Here, we briefly review recent advances in genomic studies of human ADH/ALDH families and alcoholism, with an emphasis on the pharmacogenetic consequences of venous blood acetaldehyde in the different ALDH2 genotypes following the intake of various doses of ethanol. This paper illustrates a paradigmatic example of phenotypic verifications in a protective disease gene for substance abuse. Keywords: alcohol dehydrogenase, aldehyde dehydrogenase, single nucleotide polymorphism, alcoholism, ethanol metab- olism, blood acetaldehyde Introduction Alcohol dehydrogenase (ADH) and aldehyde dehy- exposure and the concentrations of ethanol and its drogenase (ALDH) are the principal enzymes respon- metabolite acetaldehyde attained in body fluids and sible for hepatic metabolism of ethanol.1 Human tissue within that period.
    [Show full text]
  • Maximum Likelihood Placement of Environmental DNA Sequence Reads Into Curated Reference Phylogenies
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 MLTreeMap - maximum likelihood placement of environmental DNA sequence reads into curated reference phylogenies Stark, Manuel Abstract: Bei der Erforschung von mikrobiellen Gemeinschaften in situ stösst die traditionelle Mikrobi- ologie an ihre Grenzen, weil nur ein verschwindend kleiner Teil der Mikroben in Reinkultur gezu! chtet werden kann. Die Idee diesen Engpass zu umgehen, indem man DNA direkt aus aus der Umwelt extrahiert und daraufhin sequenziert, fu! hrte zur Entstehung eines neuen Forschungsfeldes, der Metagenomik. Mit Hilfe des metagenomischen Ansatzes ist es möglich, objektive Informationen u! ber alle in einer Probe präsenten Mikroben zu erhalten. Ein gewichtiger Nachteil ist allerdings, dass die gewonnenen Sequenz- daten nur fragmentiert vorliegen. MLTreeMap, das in dieser Dissertation vorgestellt wird, ist ein Soft- warepaket, welches in der Metagenomik Anwendung findet. Es wurde entwickelt, um Einblicke indie phylogenetischen und funktionellen Eigenschaften von Metagenomen und den ihnen zugrundeliegenden mikrobiellen Gemeinschaften zu gewinnen. Hierfür werden die zur Diskussion stehenden DNA Sequenzen auf eine Reihe von relevanten Markergenen hin durchsucht und deren wahrscheinlichste phylogenetische Herkunft ermittelt. Zu diesen Genen gehören proteinkodierende phylogenetische Marker, 16S und 18S rRNA Gene und Marker für wichtige Stoffwechselwege. Beispiele für letztere sind die Gene der Schlüsse- lenzyme der Photosynthese, Stickstofffixierung, Methanfixierung und Ammoniakoxidation. MLTreeMap kann entweder direkt über das Web benutzt werden (http://mltreemap.org) oder aber auf einem lokalen Computer installiert werden. Wir veröffentlichten MLTreeMap im Jahr 2010 im Journal BMC Genomics. Traditional microbiology has proven to be insufficient for studying entire microbial communities in situ, because only a small fraction of microbes can be grown in pure culture.
    [Show full text]
  • WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).
    [Show full text]