The Human Genome: Structure and Function of Genes and Chromosomes

Total Page:16

File Type:pdf, Size:1020Kb

The Human Genome: Structure and Function of Genes and Chromosomes 3 The Human Genome: Structure and Function of Genes and Chromosomes Over the past 20 years, remarkable progress has been DNA STRUCTURE: A BRIEF made in our understanding of the structure and func- REVIEW tion of genes and chromosomes at the molecular level. More recently, this has been supplemented by DNA is a polymeric nucleic acid macromolecule an in-depth understanding of the organization of the composed of three types of units: a five-carbon sugar, human genome at the level of its DNA sequence. deoxyribose; a nitrogen-containing base; and a phos- These advances have come about in large measure phate group (Fig. 3–1). The bases are of two types, through the applications of molecular genetics and purines and pyrimidines. In DNA, there are two genomics to many clinical situations, thereby provid- purine bases, adenine (A) and guanine (G), and two ing the tools for a distinctive new approach to med- pyrimidine bases, thymine (T) and cytosine (C). ical genetics. In this chapter, we present an overview Nucleotides, each composed of a base, a phosphate, of the organization of the human genome and the and a sugar moiety, polymerize into long polynu- aspects of molecular genetics that are required for an cleotide chains by 5Ј–3Ј phosphodiester bonds understanding of the genetic approach to medicine. formed between adjacent deoxyribose units (Fig. This chapter is not intended to provide an extensive 3–2). In the human genome, these polynucleotide description of the wealth of new information about chains (in their double-helix form) are hundreds of gene structure and regulation. To supplement the millions of nucleotides long, ranging in size from ap- information discussed here, Chapter 4 describes proximately 50 million base pairs (for the smallest many experimental approaches of modern molecular chromosome, chromosome 21) to 250 million base genetics that are becoming critical to the practice and pairs (for the largest chromosome, chromosome 1). understanding of human and medical genetics. The anatomical structure of DNA carries the The increased knowledge of genes, and of their chemical information that allows the exact transmis- organization in the genome, has had an enormous sion of genetic information from one cell to its impact on medicine and on our perception of human daughter cells and from one generation to the next. physiology. As Nobel laureate Paul Berg stated At the same time, the primary structure of DNA presciently at the dawn of this new era: specifies the amino acid sequences of the polypep- Just as our present knowledge and practice of medicine tide chains of proteins, as described later in this relies on a sophisticated knowledge of human anatomy, chapter. DNA has elegant features that give it these physiology, and biochemistry, so will dealing with dis- properties. The native state of DNA, as elucidated ease in the future demand a detailed understanding of by James Watson and Francis Crick in 1953, is a the molecular anatomy, physiology, and biochemistry of the human genome. We shall need a more double helix (Fig. 3–3). The helical structure detailed knowledge of how human genes are organized resembles a right-handed spiral staircase in which its and how they function and are regulated. We shall also two polynucleotide chains run in opposite direc- have to have physicians who are as conversant with the tions, held together by hydrogen bonds between molecular anatomy and physiology of chromosomes pairs of bases: A of one chain paired with T of the and genes as the cardiac surgeon is with the structure and workings of the heart. other, and G with C (see Fig. 3–3). Consequently, 17 18 THOMPSON & THOMPSON GENETICS IN MEDICINE Purines Pyrimidines NH2 O C N C N C HN C CH3 CH HC C C CH N N O N O Figure 3–1. H The four bases of H _ 5' Base DNA and the general structure of a O P O CH Adenine (A) Thymine (T) 2 O nucleotide in DNA. Each of the _ four bases bonds with deoxyribose O C C H H (through the nitrogen shown in H H red) and a phosphate group to form C C O NH2 3' the corresponding nucleotides. OH H C N C HN C N CH Phosphate Deoxyribose CH C C C CH N H2N N O N H H Guanine (G) Cytosine (C) knowledge of the sequence of nucleotide bases on complementary strands, in accordance with the one strand automatically allows one to determine sequence of the original template strands (Fig. 3–4). the sequence of bases on the other strand. The Similarly, when necessary, the base complementarity double-stranded structure of DNA molecules allows allows efficient and correct repair of damaged DNA them to replicate precisely by separation of the molecules. two strands, followed by synthesis of two new THE CENTRAL DOGMA: DNA : RNA : PROTEIN _ O 5' end _ Genetic information is contained in DNA in the O P O chromosomes within the cell nucleus, but protein O synthesis, during which the information encoded in Base 1 the DNA is used, takes place in the cytoplasm. This H2C 5' O compartmentalization reflects the fact that the human C C H H organism is a eukaryote. This means that human H H 3' C C cells have a genuine nucleus containing the DNA, O H which is separated by a nuclear membrane from the _ cytoplasm. In contrast, in prokaryotes like the intesti- O P O nal bacterium Escherichia coli, DNA is not enclosed O within a nucleus. Because of the compartmentaliza- Base 2 tion of eukaryotic cells, information transfer from the H2C 5' O nucleus to the cytoplasm is a very complex process C C H H that has been a focus of attention among molecular H H 3' C C and cellular biologists. O H The molecular link between these two related _ types of information (the DNA code of genes and the O P O amino acid code of proteins) is ribonucleic acid O (RNA). The chemical structure of RNA is similar to Base 3 that of DNA, except that each nucleotide in RNA has H2C 5' O a ribose sugar component instead of a deoxyribose; 3' end C C H H in addition, uracil (U) replaces thymine as one of H H 3' C C the pyrimidines of RNA (Fig. 3–5). An additional OH H difference between RNA and DNA is that RNA in Figure 3–2. A portion of a DNA polynucleotide chain, showing most organisms exists as a single-stranded molecule, the 3Ј–5Ј phosphodiester bonds that link adjacent nucleotides. whereas DNA exists as a double helix. The Human Genome: Structure and Function of Genes and Chromosomes 19 5' C 3' G 3.4 Å Figure 3–3. The structure of DNA. Left, A two-dimensional representation of the two complementary strands of DNA, showing the AT and GC base G C pairs. Note that the orientation of the two strands is antiparallel. Right, The double-helix model of DNA, as pro- posed by Watson and Crick. The hori- zontal “rungs” represent the paired T 34 Å bases. The helix is said to be right- A handed because the strand going from lower left to upper right crosses over the opposite strand. (Based on Watson JD, Crick FHC [1953] Molecular structure of nucleic acids—A structure C for deoxyribose nucleic acid. Nature G 171:737–738.) 3' Hydrogen bonds 5' 20 Å The informational relationships among DNA, Genetic information is stored in DNA by means of RNA, and protein are intertwined: DNA directs the a code (the genetic code, discussed later) in which the synthesis and sequence of RNA, RNA directs the sequence of adjacent bases ultimately determines the synthesis and sequence of polypeptides, and specific sequence of amino acids in the encoded polypeptide. proteins are involved in the synthesis and metabo- First, RNA is synthesized from the DNA template lism of DNA and RNA. This flow of information is through a process known as transcription. The RNA, referred to as the “central dogma” of molecular carrying the coded information in a form called mes- biology. senger RNA (mRNA), is then transported from the nucleus to the cytoplasm, where the RNA sequence is decoded, or translated, to determine the sequence of amino acids in the protein being synthesized. The 3' 5' G C process of translation occurs on ribosomes, which are G C C G cytoplasmic organelles with binding sites for all of the A T interacting molecules, including the mRNA, involved G C in protein synthesis. Ribosomes are themselves made A T T A up of many different structural proteins in association A T with a specialized type of RNA known as ribosomal G C T A RNA (rRNA). Translation involves yet a third type of C G RNA, transfer RNA (tRNA), which provides the A T molecular link between the coded base sequence of the G C T A T A mRNA and the amino acid sequence of the protein. C 3' 5' G G C G C A T A T T A T A O T A T A O G C G C C _ 5' Base G C G C HN CH O P O CH C G C G 2 O _ A T A T O C C G C G C C CH H H A T A T O H H N C T A T A 3' C T A T A H OH OH 5' 3' 5' 3' Uracil (U) Phosphate Ribose Figure 3–4. Replication of a DNA double helix, resulting in two Figure 3–5.
Recommended publications
  • Exploring the Structure of Long Non-Coding Rnas, J
    IMF YJMBI-63988; No. of pages: 15; 4C: 3, 4, 7, 8, 10 1 2 Rise of the RNA Machines: Exploring the Structure of 3 Long Non-Coding RNAs 4 Irina V. Novikova, Scott P. Hennelly, Chang-Shung Tung and Karissa Y. Sanbonmatsu Q15 6 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 7 Correspondence to Karissa Y. Sanbonmatsu: [email protected] 8 http://dx.doi.org/10.1016/j.jmb.2013.02.030 9 Edited by A. Pyle 1011 12 Abstract 13 Novel, profound and unexpected roles of long non-coding RNAs (lncRNAs) are emerging in critical aspects of 14 gene regulation. Thousands of lncRNAs have been recently discovered in a wide range of mammalian 15 systems, related to development, epigenetics, cancer, brain function and hereditary disease. The structural 16 biology of these lncRNAs presents a brave new RNA world, which may contain a diverse zoo of new 17 architectures and mechanisms. While structural studies of lncRNAs are in their infancy, we describe existing 18 structural data for lncRNAs, as well as crystallographic studies of other RNA machines and their implications 19 for lncRNAs. We also discuss the importance of dynamics in RNA machine mechanism. Determining 20 commonalities between lncRNA systems will help elucidate the evolution and mechanistic role of lncRNAs in 21 disease, creating a structural framework necessary to pursue lncRNA-based therapeutics. 22 © 2013 Published by Elsevier Ltd. 24 23 25 Introduction rather than the exception in the case of eukaryotic 50 organisms. 51 26 RNA is primarily known as an intermediary in gene LncRNAs are defined by the following: (i) lack of 52 11 27 expression between DNA and proteins.
    [Show full text]
  • Distinct Visual Pathways Mediatedrosophilalarval Light
    The Journal of Neuroscience, April 27, 2011 • 31(17):6527–6534 • 6527 Behavioral/Systems/Cognitive Distinct Visual Pathways Mediate Drosophila Larval Light Avoidance and Circadian Clock Entrainment Alex C. Keene,1 Esteban O. Mazzoni,1 Jamie Zhen,1 Meg A. Younger,1 Satoko Yamaguchi,1 Justin Blau,1 Claude Desplan,1 and Simon G. Sprecher1,2 1Department of Biology, Center for Developmental Genetics, New York University, New York, New York 10003-6688, and 2Department of Biology, Institute of Cell and Developmental Biology, University of Fribourg, 1700 Fribourg, Switzerland Visual organs perceive environmental stimuli required for rapid initiation of behaviors and can also entrain the circadian clock. The larval eye of Drosophila is capable of both functions. Each eye contains only 12 photoreceptors (PRs), which can be subdivided into two subtypes. Four PRs express blue-sensitive rhodopsin5 (rh5) and eight express green-sensitive rhodopsin6 (rh6). We found that either PR-subtype is sufficient to entrain the molecular clock by light, while only the Rh5-PR subtype is essential for light avoidance. Acetylcholine released from PRs confers both functions. Both subtypes of larval PRs innervate the main circadian pacemaker neurons of the larva, the neuropeptide PDF (pigment-dispersing factor)-expressing lateral neurons (LNs), providing sensory input to control circadian rhythms. How- ever, we show that PDF-expressing LNs are dispensable for light avoidance, and a distinct set of three clock neurons is required. Thus we have identifieddistinctsensoryandcentralcircuitryregulatinglightavoidancebehaviorandclockentrainment.Ourfindingsprovideinsightsintothe coding of sensory information for distinct behavioral functions and the underlying molecular and neuronal circuitry. Introduction sin6 (rh6) (Sprecher et al., 2007; Sprecher and Desplan, 2008).
    [Show full text]
  • Upstream Sequences Other Than AAUAAA Are Required for Efficient Messenger RNA 3’-End Formation in Plants
    The Plant Cell, Vol. 2, 1261-1272, December 1990 O 1990 American Society of Plant Physiologists Upstream Sequences Other than AAUAAA Are Required for Efficient Messenger RNA 3’-End Formation in Plants Bradley D. Mogen, Margaret H. MacDonald, Robert Graybosch,’ and Arthur G. Hunt2 Plant Physiology/Biochemistry/MolecularBiology Program, Department of Agronomy, University of Kentucky, Lexington, Kentucky 40546-009 1 We have characterized the upstream nucleotide sequences involved in mRNA 3’-end formation in the 3‘ regions of the cauliflower mosaic virus (CaMV) 19S/35S transcription unit and a pea gene encoding ribulose-l,5-bisphosphate carboxylase small subunit (rbcs). Sequences between 57 bases and 181 bases upstream from the CaMV polyade- nylation site were required for efficient polyadenylation at this site. In addition, an AAUAAA sequence located 13 bases to 18 bases upstream from this site was also important for efficient mRNA 3’-end formation. An element located between 60 bases and 137 bases upstream from the poly(A) addition sites in a pea rbcS gene was needed for functioning of these sites. The CaMV -181/-57 and rbcS -137/-60 elements were different in location and sequence composition from upstream sequences needed for polyadenylation in mammalian genes, but resembled the signals that direct mRNA 3’-end formation in yeast. However, the role of the AAUAAA motif in 3’-end formation in the CaMV 3’ region was reminiscent of mRNA polyadenylation in animals. We suggest that multiple elements are involved in mRNA 3‘-end formation in plants, and that interactions of different components of the plant polyadenyl- ation apparatus with their respective sequence elements and with each other are needed for efficient mRNA 3‘-end formation.
    [Show full text]
  • Genome Analysis and Knowledge
    Dahary et al. BMC Medical Genomics (2019) 12:200 https://doi.org/10.1186/s12920-019-0647-8 SOFTWARE Open Access Genome analysis and knowledge-driven variant interpretation with TGex Dvir Dahary1*, Yaron Golan1, Yaron Mazor1, Ofer Zelig1, Ruth Barshir2, Michal Twik2, Tsippi Iny Stein2, Guy Rosner3,4, Revital Kariv3,4, Fei Chen5, Qiang Zhang5, Yiping Shen5,6,7, Marilyn Safran2, Doron Lancet2* and Simon Fishilevich2* Abstract Background: The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient’s phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants. Results: We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex’s main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex’s broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards’ recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters.
    [Show full text]
  • POST-TRANSCRIPTIONAL REGULATION of AFP and Igm GENES
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 POST-TRANSCRIPTIONAL REGULATION OF AFP AND IgM GENES Lilia M. Turcios University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Turcios, Lilia M., "POST-TRANSCRIPTIONAL REGULATION OF AFP AND IgM GENES" (2011). University of Kentucky Doctoral Dissertations. 210. https://uknowledge.uky.edu/gradschool_diss/210 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Lilia M. Turcios The Graduate School University of Kentucky 2011 POST-TRANSCRIPTIONAL REGULATION OF AFP AND IgM GENES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Medicine at the University of Kentucky By Lilia M. Turcios Director: Dr. Martha Peterson Lexington, KY 2011 Copyright © Lilia M. Turcios 2011 ABSTRACT OF DISSERTATION POST-TRANSCRIPTIONAL REGULATION OF AFP AND IgM GENES Gene expression can be regulated at multiple steps once transcription is initiated. I have studied two different gene models, the α-Fetoprotein (AFP) and the immunoglobulin heavy chain (IgM) genes, to better understand post-transcriptional gene regulation mechanisms. The AFP gene is highly expressed during fetal liver development and dramatically repressed after birth. There is a mouse strain-specific difference between adult levels of AFP, with BALB/cJ mice expressing 10 to 20-fold higher levels compared to other mouse strains.
    [Show full text]
  • Metabolic Inactivation of the Circadian Transmitter, Pigment Dispersing Factor (PDF), by Neprilysin-Like Peptidases in Drosophila R
    4465 The Journal of Experimental Biology 210, 4465-4470 Published by The Company of Biologists 2007 doi:10.1242/jeb.012088 Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila R. Elwyn Isaac1,*, Erik C. Johnson2, Neil Audsley3 and Alan D. Shirras4 1Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK, 2Department of Biology, Wake Forest University, NC, USA, 3Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK and 4Department of Biological Sciences, University of Lancaster, LA1 4YQ, UK *Author for correspondence (e-mail: [email protected]) Accepted 4 October 2007 Summary Recent studies have firmly established pigment confirming that such cleavage results in PDF inactivation. dispersing factor (PDF), a C-terminally amidated The Ser7–Leu8 peptide bond was also the principal octodecapeptide, as a key neurotransmitter regulating cleavage site when PDF was incubated with membranes rhythmic circadian locomotory behaviours in adult prepared from heads of adult Drosophila. This Drosophila melanogaster. The mechanisms by which PDF endopeptidase activity was inhibited by the neprilysin –1 functions as a circadian peptide transmitter are not fully inhibitors phosphoramidon (IC50, 0.15·␮mol·l ) and –1 understood, however; in particular, nothing is known thiorphan (IC50, 1.2·␮mol·l ). We propose that cleavage by about the role of extracellular peptidases in terminating a member of the Drosophila neprilysin family of PDF signalling at synapses. In this study we show that PDF endopeptidases is the most likely mechanism for is susceptible to hydrolysis by neprilysin, an endopeptidase inactivating synaptic PDF and that neprilysin might have that is enriched in synaptic membranes of mammals and an important role in regulating PDF signals within insects.
    [Show full text]
  • The Nucleotide Sequence of the Gene for Human Protein C (DNA Sequence Analysis/Vitamin K-Dependent Proteins/Blood Coagulation) DONALD C
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 4673-4677, July 1985 Biochemistry The nucleotide sequence of the gene for human protein C (DNA sequence analysis/vitamin K-dependent proteins/blood coagulation) DONALD C. FOSTER, SHINJI YOSHITAKE, AND EARL W. DAVIE Department of Biochemistry, University of Washington, Seattle, WA 98195 Contributed by Earl W. Davie, April 9, 1985 ABSTRACT A human genomic DNA library was screened MATERIALS AND METHODS for the gene for protein C by using a cDNA probe coding for the human protein. Three different overlapping A Charon 4A Screening of the Genomic Library. A human genomic phage were isolated that contain inserts for the gene for protein library in X Charon 4A phage (14) was screened for genomic C. The complete sequence of the gene was determined by the clones of human protein C by the plaque hybridization dideoxy method and shown to span about 11 kilobases ofDNA. procedure ofBenton and Davis as modified by Woo (15) using The coding and 3' noncoding portion of the gene consists of a cDNA for human protein C (9) as the hybridization probe. eight exons and seven introns. The eight exons code for a The cDNA started at amino acid 64 of human protein C and preproleader sequence of 42 amino acids, a light chain of 155 extended to the second polyadenylylation signal (9). It was amino acids, a connecting dipeptide of Lys-Arg, and a heavy radiolabeled by nick-translation to a specific activity of 8 X chain of 262 amino acids. The preproleader sequence and the 108 cpm/,ug with all four radioactive ([a-32P]dNTP) connecting dipeptide are removed during processing, resulting deoxynucleotides.
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • Classification and Function of Small Open-Reading Frames Abstract
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online 1 Classification and function of small open-reading frames Juan-Pablo Couso1,2* and Pedro Patraquim2 1Centro Andaluz de Biologia del Desarrollo, CSIC-UPO, Sevilla, Spain and 2Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom. *Author for correspondence: [email protected] Abstract Small open-reading frames (smORFs or sORFs) of 100 codons or less are usually - if arbitrarily - excluded from canonical proteome annotations. Despite this, the genomes of a wide range of metazoans, including humans, contain hundreds of smORFs, some of which fulfil key physiological functions. Recently, ribosomal profiling has been employed to show that the transcriptome of the model organism Drosophila melanogaster contains thousands of smORFs of different classes actively undergoing translation which produces peptides of mostly unknown function. Here we present a comprehensive analysis of the smORF repertoire in flies, mice and humans. We propose the existence of several classes of smORFs with different functions, from inert DNA sequences to transcribed and translated cis- regulators of translation, and finally to expression of functional peptides with a propensity to act as regulators of canonical membrane-associated proteins, or as components of ancestral protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps during the evolution of novel peptide and protein sequences. Our analysis introduces a distinction between different peptide-coding classes in animal genomes, and highlights the role of Drosophila melanogaster as a model organism for the study of small peptide biology in the context of development, physiology and human disease.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Eukaryotic and Prokaryotic Gene Structure Thomas Shafee*, Rohan Lowe
    WikiJournal of Medicine, 2017, 4(1):2 doi: 10.15347/wjm/2017.002 Figure Article Eukaryotic and prokaryotic gene structure Thomas Shafee*, Rohan Lowe Abstract Genes consist of multiple sequence elements that together encode the functional product and regulate its expres- sion. Despite their fundamental importance, there are few freely available diagrams of gene structure. Presented here are two figures that summarise the different structures found in eukaryotic and prokaryotic genes. Common gene structural elements are colour-coded by their function in regulation, transcription, or translation. Introduction Previous images Gene structure Access to freely available diagrams is important for sci- entists, medical professions and the general pub- Genes contain the information necessary for living cells lic.[7][8]However, current open-access gene structure to survive and reproduce.[1][2] In most organisms, genes figures are limited in their scope (Supplementary fig- are made of DNA, where the particular DNA sequence ures 1-4), typically showing one or a few aspects (e.g. determines the function of the gene. A gene is tran- exon splicing, or promoter regions). Information-rich scribed (copied) from DNA into RNA, which can either diagrams that use a consistent colour scheme and lay- be non-coding (ncRNA) with a direct function, or an in- out should help the comprehension of complex con- termediate messenger (mRNA) that is then translated cepts.[9] into protein. Each of these steps is controlled by specific sequence elements, or regions, within the gene. Every This work provides two diagrams that summarise the gene, therefore, requires multiple sequence elements complex structure and terminology of genes.
    [Show full text]
  • Chromosome.Pdf
    Chromosomes What Exactly is a chromosome? Chromosomes are the rod-shaped, filamentous bodies present in the nucleus, which become visible during cell division. They are the carriers of the gene or unit of heredity. Chromosome are not visible in active nucleus due to their high water content, but are clearly seen during cell division. Chromosomes were first described by Strausberger in 1875. The term “Chromosome”, however was first used by Waldeyer in 1888. They were given the name chromosome (Chromo = colour; Soma = body) due to their marked affinity for basic dyes. Their number can be counted easily only during mitotic metaphase. Chromosomes are composed of thin chromatin threads called Chromatin fibers. These fibers undergo folding, coiling and supercoiling during prophase so that the chromosomes become progressively thicker and smaller. Therefore, chromosomes become readily observable under light microscope. At the end of cell division, on the other hand, the fibers uncoil and extend as fine chromatin threads, which are not visible at light microscope Number of chromosomes Normally, all the individuals of a species have the same number of chromosomes. Closely related species usually have similar chromosome numbers. Presence of a whole sets of chromosomes is called euploidy. It includes haploids, diploids, triploids, tetraploids etc. Gametes normally contain only one set of chromosome – this number is called Haploid Somatic cells usually contain two sets of chromosome - 2n : Diploid 3n – triploid 4n – tetraploid The condition in which the chromosomes sets are present in a multiples of “n” is Polyploidy When a change in the chromosome number does not involve entire sets of chromosomes, but only a few of the chromosomes - is Aneuploidy.
    [Show full text]