Article Formation, Knowledge of Their Exact Volatilities Ber

Total Page:16

File Type:pdf, Size:1020Kb

Article Formation, Knowledge of Their Exact Volatilities Ber Atmos. Chem. Phys., 20, 649–669, 2020 https://doi.org/10.5194/acp-20-649-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs) Otso Peräkylä1, Matthieu Riva1,2, Liine Heikkinen1, Lauriane Quéléver1, Pontus Roldin3, and Mikael Ehn1 1Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland 2Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France 3Division of Nuclear Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden Correspondence: Otso Peräkylä (otso.perakyla@helsinki.fi) and Mikael Ehn (mikael.ehn@helsinki.fi) Received: 1 July 2019 – Discussion started: 4 July 2019 Revised: 26 October 2019 – Accepted: 8 November 2019 – Published: 20 January 2020 Abstract. Secondary organic aerosol (SOA) forms a major based on many existing models for volatility, such as SIM- part of the tropospheric submicron aerosol. Still, the exact POL. The hydrogen number of a compound also predicted its formation mechanisms of SOA have remained elusive. Re- volatility, independently of the carbon number, with higher cently, a newly discovered group of oxidation products of hydrogen numbers corresponding to lower volatilities. This volatile organic compounds (VOCs), highly oxygenated or- can be explained in terms of the functional groups making ganic molecules (HOMs), have been proposed to be respon- up a molecule: high hydrogen numbers are associated with, sible for a large fraction of SOA formation. To assess the e.g. hydroxy groups, which lower volatility more than, e.g. potential of HOMs to form SOA and to even take part in carbonyls, which are associated with a lower hydrogen num- new particle formation, knowledge of their exact volatilities ber. The method presented should be applicable to systems is essential. However, due to their exotic, and partially un- other than α-pinene ozonolysis, and with different organic known, structures, estimating their volatility is challenging. loadings, in order to study different volatility ranges. In this study, we performed a set of continuous flow cham- ber experiments, supported by box modelling, to study the volatilities of HOMs, along with some less oxygenated com- pounds, formed in the ozonolysis of α-pinene, an abundant 1 Introduction VOC emitted by boreal forests. Along with gaseous precur- sors, we periodically injected inorganic seed aerosol into the Secondary organic aerosol (SOA) makes up a major fraction chamber to vary the condensation sink (CS) of low-volatility of the tropospheric submicron aerosol world-wide (Zhang vapours. We monitored the decrease of oxidation products in et al., 2007; Jimenez et al., 2009). Despite its importance and the gas phase in response to increasing CS, and were able much research effort, our fundamental understanding of the to relate the responses to the volatilities of the compounds. formation of SOA remains lacking (Hallquist et al., 2009; We found that HOM monomers are mainly of low volatility, Shrivastava et al., 2017). Recently, a new group of oxidation with a small fraction being semi-volatile. HOM dimers were products of volatile organic compounds (VOCs), highly oxy- all at least low volatility, but probably extremely low volatil- genated organic molecules (HOMs; Ehn et al., 2014, 2017; ity; however, our method is not directly able to distinguish Bianchi et al., 2019), has been proposed to be the source of between the two. We were able to model the volatility of the a major fraction of tropospheric submicron SOA (Ehn et al., oxidation products in terms of their carbon, hydrogen, oxy- 2014). Important sources of HOMs include many monoter- gen and nitrogen numbers. We found that increasing levels penes, the most abundant group of biogenic VOCs emitted of oxygenation correspond to lower volatilities, as expected, by boreal forests. but that the decrease is less steep than would be expected Most VOCs form organic peroxy (RO2) radicals upon oxi- dation. HOMs form through the autoxidation of these organic Published by Copernicus Publications on behalf of the European Geosciences Union. 650 O. Peräkylä et al.: Experimental HOM volatilities peroxy radicals, a process only recently discovered to be im- semi-volatile organic compounds (LVOCs and SVOCs re- portant in atmospheric oxidation (Crounse et al., 2013; Ehn spectively, again according to Donahue et al., 2012). Thus, et al., 2014). An extensive description of HOM formation detailed information on HOM volatility is still lacking, which can be found in Bianchi et al.(2019). Briefly, in autoxida- presents a key obstacle for assessing their impact on particle tion, RO2 radicals undergo intramolecular hydrogen abstrac- formation (Bianchi et al., 2019). tions, followed by the addition of molecular oxygen on the Here, we investigate the volatility of HOMs, along with resulting carbon-centred radical. This results in a new RO2 some less oxygenated compounds, experimentally, in a man- radical, with an additional hydroperoxy group. This process ner similar to Ehn et al.(2014), but on a molecular level. We can repeat multiple times. The radical reaction chain can be produce HOMs in the ozonolysis of α-pinene in a continu- terminated unimolecularly, through the loss of an OH radical ous flow smog chamber, and measure them in the gas phase from the RO2 radical, resulting in a closed shell oxidation with the nitrate chemical ionization atmospheric pressure in- product. It can also be terminated bimolecularly, for exam- terface time-of-flight mass spectrometer (CI-APi-TOF; Joki- ple through the reaction with another RO2 radical, or nitric nen et al., 2012). We inject inorganic seed aerosol into the oxide (NO). The termination mechanism is important in de- chamber, and monitor how the gas-phase concentrations of termining which types of HOMs form in the reaction. As an the oxidation products change. We show that we can gain example, bimolecular termination with another RO2 radical valuable and detailed information about the volatility of the can very efficiently lead to the formation of molecular dimers oxidation products using this method. Further, we develop a of extremely low volatility (Berndt et al., 2018a,b), and the parameterization describing the volatility of HOMs formed termination with NO can lead to the formation of organic ni- in the ozonolysis of α-pinene, especially the monomers, in trates. Due to the fast autoxidation process, combined with terms of their composition, and compare the results to exist- different termination mechanisms, products can rapidly ac- ing parameterizations and estimates on HOM volatility. quire high oxygen content, with those having at least six oxy- gen atoms counted as HOMs (Bianchi et al., 2019). The oxy- gen appears in the form of many functional groups, including 2 Methods carbonyl, hydroperoxy, hydroxy, peroxy acid and carboxylic acid groups (e.g. Mentel et al., 2015). 2.1 Chamber set-up Due to the high level of functionalization, HOMs are thought to be of low volatility (Bianchi et al., 2019). This is In order to investigate the volatility of HOMs formed in the supported by observations that HOMs are efficient in form- gas phase in a controlled manner, we conducted a series ing SOA, and even able to take part in the very first steps of laboratory experiments in the newly constructed COALA of new particle formation (NPF; Ehn et al., 2014; Kirkby chamber at the University of Helsinki, previously presented et al., 2016). To determine exactly to what extent HOMs by Riva et al.(2019). The chamber is a 2 m 3 bag, made of can impact NPF and SOA formation, the knowledge of their teflon (FEP) foil with dimensions of 1650 × 1100 × 1100 vapour pressures is essential (Bianchi et al., 2019). Still, de- (L × W × H) and 0.125 mm thickness, supplied by Vector termining the vapour pressures of HOMs remains challeng- Foiltec (Bremen, Germany). The chamber is contained in a ing. Most of the species have not been isolated, hampering rigid enclosure with 400 nm LED lights to photolyse nitro- experimental characterization (Bianchi et al., 2019). Due to gen dioxide (NO2) to NO, and is stirred with a teflon fan to the high numbers of functional groups, estimating the vapour ensure homogeneous mixing of the air inside. The chamber pressures with commonly used functional group contribu- was operated in a continuous flow mode, with a residence tion methods is not sufficient, and different computational time of 50 min, attained by setting the inflow to the chamber approaches give estimates of the vapour pressures spanning to 40 L min−1. In the continuous flow mode the total flow many orders of magnitude (Kurtén et al., 2016). In order to out of the chamber was the same as the inflow. The instru- investigate the volatility of HOMs formed in the ozonolysis mentation (Sect. 2.2) sampled the majority of the flow out of of α-pinene, Ehn et al.(2014) used injections of inorganic the chamber. The chamber was maintained at a slight over- seed aerosol to increase the condensation sink in a cham- pressure, resulting in the rest of the flow being flushed to an ber experiment. They observed the behaviour of HOMs to exhaust line. be consistent with kinetically limited condensation and ex- We injected dry air purified with a clean air generator tremely low volatilities, but only looked at the sum of HOMs, (AADCO model 737-14, Ohio, USA) into the chamber, not focusing on individual compounds. Thus, and also based along with gaseous reactants α-pinene, O3 and, in some of on existing composition–volatility relationships, HOMs were the experiments, NO2. Ozone was generated by injecting initially classified as extremely low-volatility organic com- purified air through an ozone generator (Dasibi 1008-PC), pounds (ELVOCs, according to the definitions by Donahue while α-pinene and NO2 were from gas bottles.
Recommended publications
  • Determining Volatile Organic Carbon by Differential Scanning Calorimetry
    DETERMINING VOLATILE ORGANIC CARBON BY DIFFERENTIAL SCANNING CALORIMETRY By Roger L. Blaine TA Instrument, Inc. Volatile Organic Carbons (VOCs) are known to have serious environmental effects. Because of these deleterious effects, large scale attempts are being made to measure, reduce and regulate VOC use and emission. The California EPA, for example, requires characterization of the total volatility of pesticides based upon a TGA loss-on-drying test method [1, 2]. In another move, countries of the European market have reached a protocol agreement to reduce and stabilize VOC emissions by the year 2000 to 70% of the 1991 values [3]. And recently the Swiss Federal Government has imposed a tax on the amount of VOC [4]. Such regulatory agreements require qualitative and quantitative tools to assess what is a VOC and how much is present in a given formulation. Chief targets for VOC action include the paints and coatings industries, agricultural pesticides and solvent cleaning processes. VOC’s are defined as those organic materials having a vapor pressure greater than 10 Pa at 20 °C or having corresponding volatility at other operating temperatures associated with industrial processes [3]. Differential scanning calorimetry (DSC) is a useful tool for screening for potential VOC candidates as well as the actual determination of vapor pressure of suspect materials. Both of these measurements are based on the determination of the boiling (or sublimation) temperature; the former under atmospheric conditions, the latter under reduced pressures. Figure 1 725 ° exo 180 C µ size: 10 l 580 prog: 10°C / min atm: N2 Heat Flow Heat Flow 2.25mPa 435 (326 psi) [ ----] Pressure (psi) endo 290 50 100 150 200 250 300 Temperature (°C) TA250 Nielson and co-workers [5] have observed that: • All organic solvents with boiling temperatures below 170 °C are classified as VOCs, and • No organics solvents with boiling temperatures greater than 260 °C are VOCs.
    [Show full text]
  • Cinnamoyl Esters of Lesquerella and Castor Oil: Novel Sunscreen Active Ingredients David L
    Cinnamoyl Esters of Lesquerella and Castor Oil: Novel Sunscreen Active Ingredients David L. Compton*, Joseph A. Laszlo, and Terry A. Isbell New Crops and Processing Technology Research Unit, USDA, ARS, NCAUR, Peoria, Illinois 61604 ABSTRACT: Lesquerella and castor oils were esterified with querolin (2). Therefore, LO in essence contains two moles of cinnamic acid (CA) and 4-methoxycinnamic acid (MCA). Esteri- hydroxy functionality per mole of triglyceride (TG). fication of the hydroxy oils reached 85% completion with CA The hydroxy functionality of the FA of the TG can be ex- and 50% conversion with MCA. The hydroxy oils were esteri- ploited by esterification to form estolides. The majority of re- fied at 200°C under a nitrogen atmosphere within a sealed sys- search has focused on the estolides of hydroxy FA and TG tem. Unreacted CA and MCA were removed from the reaction formed with oleic acid. The esterification of hydroxy TG and mixtures by sublimation at 100°C under vacuum. The resultant free lesquerolic acid with oleic acid using a cobalt catalyst (4) methoxycinnamic oils possessed a broader, more blue-shifted or a lipase catalyst (5) has been reported. Also, the acid-cat- UV absorbance, 250 to 345 nm with a λmax of 305 nm, com- pared with the cinnamic oils, which absorbed from 260 to 315 alyzed formation of estolides from CO and LO with oleic acid has been patented (6). Recently, a detailed study of the effect nm, λmax of 270 nm. The methoxycinnamic oils provide better UV-B absorption and thus are better candidates to be used as of oleic acid concentration and temperature on catalyst-free sunscreen active ingredients.
    [Show full text]
  • Unit One Part 2: Naming and Functional Groups
    gjr-–- 1 Unit One Part 2: naming and functional groups • To write and interpret IUPAC names for small, simple molecules • Identify some common functional groups found in organic molecules O CH3 H3C N H N O N N O H3C S N O N H3C viagra™ (trade name) sildenafil (trivial name) 5-(2-ethoxy-5-(4-methylpiperazin-1-ylsulfonyl)phenyl)-1-methyl-3-propyl-1H- pyrazolo[4,3-d] pyrimidin-7(6H)-one dr gareth rowlands; [email protected]; science tower a4.12 http://www.massey.ac.nz/~gjrowlan gjr-–- 2 Systematic (IUPAC) naming PREFIX PARENT SUFFIX substituents / minor number of C principal functional functional groups AND multiple bond group index • Comprises of three main parts • Note: multiple bond index is always incorporated in parent section No. Carbons Root No. Carbons Root Multiple-bond 1 meth 6 hex Bond index 2 eth 7 hept C–C an(e) 3 prop 8 oct C=C en(e) 4 but 9 non C≡C yn(e) 5 pent 10 dec gjr-–- 3 Systematic (IUPAC) naming: functional groups Functional group Structure Suffix Prefix General form O –oic acid acid –carboxylic acid carboxy R-COOH R OH O O –oic anhydride anhydride –carboxylic anhydride R-C(O)OC(O)-R R O R O –oyl chloride acyl chloride -carbonyl chloride chlorocarbonyl R-COCl R Cl O –oate ester –carboxylate alkoxycarbonyl R-COOR R OR O –amide amide –carboxamide carbamoyl R-CONH2 R NH2 nitrile R N –nitrile cyano R-C≡N O –al aldehyde –carbaldehyde oxo R-CHO R H O ketone –one oxo R-CO-R R R alcohol R OH –ol hydroxy R-OH amine R NH2 –amine amino R-NH2 O ether R R –ether alkoxy R-O-R alkyl bromide bromo R-Br (alkyl halide) R Br (halo) (R-X) gjr-–- 4 Nomenclature rules 1.
    [Show full text]
  • Molecular Corridors and Parameterizations of Volatility in the Chemical Evolution of Organic Aerosols
    Atmos. Chem. Phys., 16, 3327–3344, 2016 www.atmos-chem-phys.net/16/3327/2016/ doi:10.5194/acp-16-3327-2016 © Author(s) 2016. CC Attribution 3.0 License. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols Ying Li1,2, Ulrich Pöschl1, and Manabu Shiraiwa1 1Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China Correspondence to: Manabu Shiraiwa ([email protected]) Received: 23 September 2015 – Published in Atmos. Chem. Phys. Discuss.: 15 October 2015 Revised: 1 March 2016 – Accepted: 3 March 2016 – Published: 14 March 2016 Abstract. The formation and aging of organic aerosols (OA) 1 Introduction proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is chal- lenging for the interpretation of field measurements and lab- Organic aerosols (OA) consist of a myriad of chemical oratory experiments as well as accurate representation of species and account for a substantial mass fraction (20–90 %) OA evolution in atmospheric aerosol models. Based on data of the total submicron particles in the troposphere (Jimenez from over 30 000 compounds, we show that organic com- et al., 2009; Nizkorodov et al., 2011). They influence regional pounds with a wide variety of functional groups fall into and global climate by affecting radiative budget of the at- molecular corridors, characterized by a tight inverse cor- mosphere and serving as nuclei for cloud droplets and ice relation between molar mass and volatility.
    [Show full text]
  • Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
    United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION.................
    [Show full text]
  • Distillation Theory
    Chapter 2 Distillation Theory by Ivar J. Halvorsen and Sigurd Skogestad Norwegian University of Science and Technology Department of Chemical Engineering 7491 Trondheim, Norway This is a revised version of an article published in the Encyclopedia of Separation Science by Aca- demic Press Ltd. (2000). The article gives some of the basics of distillation theory and its purpose is to provide basic understanding and some tools for simple hand calculations of distillation col- umns. The methods presented here can be used to obtain simple estimates and to check more rigorous computations. NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen 28 2.1 Introduction Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A.D. Today distillation is the most important industrial separation technology. It is particu- larly well suited for high purity separations since any degree of separation can be obtained with a fixed energy consumption by increasing the number of equilib- rium stages. To describe the degree of separation between two components in a column or in a column section, we introduce the separation factor: ()⁄ xL xH S = ------------------------T (2.1) ()x ⁄ x L H B where x denotes mole fraction of a component, subscript L denotes light compo- nent, H heavy component, T denotes the top of the section, and B the bottom. It is relatively straightforward to derive models of distillation columns based on almost any degree of detail, and also to use such models to simulate the behaviour on a computer.
    [Show full text]
  • Studies on the Chemistry of Paclitaxel
    STUDIES ON THE CHEMISTRY OF PACLITAXEL Haiqing Yuan Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in the partial fulfillment of the requirement for the degree of Doctor of Philosophy in Chemistry Dr. David G. I. Kingston, Chair Dr. Michael Calter Dr. Neal Castagnoli, Jr. Dr. Richard Gandour Dr. Larry Taylor August 11, 1998 Blacksburg, Virginia Keywords: Paclitaxel, Taxol®, synthesis, analog, SAR Copyright 1998, Haiqing Yuan STUDIES ON THE CHEMISTRY OF PACLITAXEL HAIQING YUAN (ABSTRACT) Paclitaxel is a natural occurring diterpene alkaloid originally isolated from the bark of Taxus brevifolia. It is now one of the most important chemotherapeutic agents for clinical treatment of ovarian and breast cancers. Recent clinical trials have also shown paclitaxel’s potential for the treatment of non-small-cell lung cancer, head and neck cancer, and other types of cancers. While tremendous chemical research efforts have been made in the past years, which established the fundamental structure-activity relationships of the paclitaxel molecule, and provided analogs for biochemical studies to elucidate the precise mechanism of action and for the development of second-generation agents, many areas remain to be explored. In continuation of our efforts in the structure-activity relationships study of A- norpaclitaxel, five new analogs modified at the C-1 substituent and analogs with expanded B-ring or contracted C-ring have now been prepared. Preliminary biological studies indicated that the volume rather than functionality at the C-1 position plays a role in determining the anticancer activity by controlling the relative position of the tetracyclic ring system, which in turn controls the positions of the most critical functionalities such as the C-2 benzoyl, the C-4 acetate, and the C-13 side chain.
    [Show full text]
  • Organic Chemistry Tests for Hydroxyl Group
    Chemistry Organic Chemistry Tests for Hydroxyl Group General Aim Method Identication of aliphatic alcohols through the chemical Detection of the presence of hydroxyl groups in detection of hydroxyl groups. aliphatic alcohols using special chemical tests. Learning Objectives (ILOs) Dene and determine aliphatic alcohols theoretically through their chemical structure. Classify organic compounds containing hydroxyl groups into aliphatic and aromatic. Compare between alcohols and other functional groups in terms of chemical structures, properties and reactions. Identify aliphatic alcohols experimentally. Select the appropriate reagents to dierentiate between alcohols and other organic compounds. Theoretical Background/Context - Aliphatic alcohols are non-aromatic hydrocarbons possessing at least one hydroxyl group within their structure. They can be either cyclic or acyclic compounds. Alcohols are considered to be neutral compounds. Aliphatic Cyclic Alcohol Aliphatic Acyclic Alcohol - Alcohols are also classied to primary, secondary and tertiary alcohols according to the number of carbon atoms attached to the carbon atom linked to the hydroxyl group. First: Preparation of Aliphatic Alcohols - Alcohols can be prepared through some chemical routes such as reduction of the corresponding aldehydes and ketones using some reducing agents such as lithium aluminum hydride or sodium borohydride. They can be also obtained from hydration of the corresponding alkenes. Some primary alcohols can be synthesized through the nucleophilic substitution of corresponding alkyl halides using potassium or sodium hydroxides. - Alcohols can be also obtained through some biological routes such as ethanol and butanol through fermentation processes in presence of glucose. Glucose is obtained from starch hydrolysis in the presence of yeast. 1 www.praxilabs.com Theoretical Background/Context (Cont’) Second: General Properties of Aliphatic Alcohols - Aliphatic alcohols are polar compounds and can form hydrogen bonds easily.
    [Show full text]
  • Ganic Compounds
    6-1 SECTION 6 NOMENCLATURE AND STRUCTURE OF ORGANIC COMPOUNDS Many organic compounds have common names which have arisen historically, or have been given to them when the compound has been isolated from a natural product or first synthesised. As there are so many organic compounds chemists have developed rules for naming a compound systematically, so that it structure can be deduced from its name. This section introduces this systematic nomenclature, and the ways the structure of organic compounds can be depicted more simply than by full Lewis structures. The language is based on Latin, Greek and German in addition to English, so a classical education is beneficial for chemists! Greek and Latin prefixes play an important role in nomenclature: Greek Latin ½ hemi semi 1 mono uni 1½ sesqui 2 di bi 3 tri ter 4 tetra quadri 5 penta quinque 6 hexa sexi 7 hepta septi 8 octa octo 9 ennea nona 10 deca deci Organic compounds: Compounds containing the element carbon [e.g. methane, butanol]. (CO, CO2 and carbonates are classified as inorganic.) See page 1-4. Special characteristics of many organic compounds are chains or rings of carbon atoms bonded together, which provides the basis for naming, and the presence of many carbon- hydrogen bonds. The valency of carbon in organic compounds is 4. Hydrocarbons: Compounds containing only the elements C and H. Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, decane.
    [Show full text]
  • Preparation of Hydroxy Aromatic Carboxylic Acids and Ester Derivatives Thereof
    Europiisches Patentamt European Patent Office © Publication number: 0 049 616 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION © Application number: 81304567.1 © int. ci.3: C 07 C 69/88 C 07 C 67/36 © Date of filing: 02.10.81 © Priority: 06.10.80 US 194201 © Applicant: CELANESE CORPORATION 1211 Avenue Of The Americas New York New York 10036IUS) © Date of publication of application: 14.04.82 Bulletin 82/15 © Inventor: McGinnes, James L 236 Raritan Avenue © Designated Contracting States: Middlesex New Jersey(US) BE DE FR GB IT NL © Inventor: Conciatori, Anthony B. 27. Orchard Road Chatham New Jersey(US) @ Representative: De Minvielle-Devaux, Ian Benedict Peter et al, CARPMAELS & RANSFORD 43, Bloomsbury Square London WC1 A 2RA(GB) © Preparation of hydroxy aromatic carboxylic acids and ester derivatives thereof. A process for preparing hydroxy aromatic carboxylic acids, or the ester derivatives thereof, comprises carbonylat- ing a hydroxy aromatic halide in the presence of a reactive alcohol solvent and a catalytic amount of a Group VIII metal catalyst. The process has particular applicability to the preparation of 6-hydroxy-2-naphthoic acid from 6-bromo-2- naphthol, which can be easily prepared from β-naphthol, a readily available and inexpensive starting material. This invention relates to a novel process for pre- paring hydroxy aromatic carboxylic acids or the corresponding ester derivatives thereof. This invention relates particular- ly to a novel process for the preparation of esters of hydroxy aromatic carboxylic acids such as 6-hydroxy-2- naphthoic acid by the carbonylation of a hydroxy aromatic halide, followed if desired by conversion of the esters to the acids.
    [Show full text]
  • Lipophilicity As a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives
    molecules Article Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives Teodora Constantinescu 1, Claudiu Nicolae Lungu 2,* and Ildiko Lung 3 1 Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania; [email protected] 2 Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania 3 National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donath street, 400293 Cluj-Napoca, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-(0)-742-255-099 Received: 11 March 2019; Accepted: 10 April 2019; Published: 17 April 2019 Abstract: Lipophilcity is an important physico-chemical parameter that influences membrane transport and binding ability to action. Migration distance following complete elution of compounds was used to calculate different lipophilicity-related parameters. The aim of this study is to show that lipophilicity is a central component of thiazole chalcones and flavonoid derivatives regarding their drug-like properties. Experimental and computational methods were used. This study considers 44 previously synthesized compounds (thiazole chalcones, flavanones, flavones, 3-hydroxyflavones, and their acetylated derivatives). The concerned compounds have shown antitumoral hallmarks and antibacterial activity in vitro. The experimental method used to determine compounds’ lipophilicity was the reverse-phase thin layer chromatography (RP-TLC). Lipophilicity related 0 parameters—isocratic retention factor (RM), relative lipophily (RM ), slope (b), chromatographic hydrophobic index ('0), scores of principal components (PC1/RM)—were determined based on reverse-phase chromatography results. Keywords: lipophilicity; retention factor; chalcones; QSAR; chromatography; drug design 1. Introduction Lipophilicity is an important feature of molecules in pharmaceutical, biochemical, and medical chemistry fields.
    [Show full text]
  • United States Patent (19) 11 4,267,375 Maasbol Et Al
    United States Patent (19) 11 4,267,375 Maasbol et al. 45 May 12, 1981 54 PREPARATION OF THIOETHERS OTHER PUBLICATIONS 75) Inventors: Alfred G. Maasbol, Hamburg, Fed. I. Ruderman et al., J. Amer. Chem. Soc., 71, pp. Rep. of Germany; Lothar G. Dulog, 2264-2265, (1949). St. Martens Latem, Belgium Morrisson and Boyd, Organic Chemistry, 2nd edition, (1967), pp. 29–30. 73) Assignee: s.a. Texaco Belgium in.v., Brussels, T. Todsen et al., J. Amer. Chem. Soc., 72, pp. Belgium 4000-4002, (1950). Berichte Deutsch. Chemie, vol. 1, pp. 587-591, (1935), (21) Appl. No.: 945,273 Berlin. 22 Filed: Sep. 25, 1978 D. Gregg et al., J. Org. Chem., pp. 246-252, (1950). M. Malinovskii, Epoxides and Their Derivatives, pp. Related U.S. Application Data 131-136, (1965), Jerusalem, Daniel Davey & Co. Primary Examiner-Glennon H. Hollrah 63 Continuation of Ser. No. 703,045, Jul. 6, 1976, aban Assistant Examiner-M. C. Eakin doned. Attorney, Agent, or Firm-Carl G. Ries; Robert A. 30 Foreign Application Priority Data Kulason; Carl G. Seutter Nov. 19, 1975 GB United Kingdom ............... 47582/75 57 ABSTRACT .. 51 Int. Cl. ............................................ CO7C 149/30 Thioethers may be prepared by reacting a thiol, such as thiophenol, with an alcohol (having electron donor 52 U.S. C. ......................................... 568/57; 568/58 groups in the alpha or beta position to its hydroxyl 58 Field of Search ........................ 260/609 E, 609 R group) such as phenyl-1-hydroxy-phenethylsulfide. Re 56) References Cited action is carried out in the presence of a Lewis Acid U.S. PATENT DOCUMENTS metal halide, typically zinc chloride.
    [Show full text]