Molecular Interactions Between the Kelp Saccharina Latissima and Algal Endophytes Miriam Bernard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling Potential Production and Environmental Effects Of
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-195 Manuscript under review for journal Biogeosciences Discussion started: 14 June 2017 c Author(s) 2017. CC BY 3.0 License. Modelling potential production and environmental effects of macroalgae farms in UK and Dutch coastal waters Johan van der Molen1,2, Piet Ruardij2, Karen Mooney4, Philip Kerrison5, Nessa E. O'Connor4, Emma Gorman4, Klaas Timmermans3, Serena Wright1, Maeve Kelly5, Adam D. Hughes5, Elisa Capuzzo1 5 1The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, NR33 0HT, UK 2NIOZ Royal Netherlands Institute for Sea Research, Dept. of Coastal Systems and Utrecht University, Den Burg, 1797 SZ, The Netherlands 3NIOZ Royal Netherlands Institute for Sea Research, Dept. of Estuarine and Delta Systems and Utrecht University, Yerseke, 4401 NT, The Netherlands 10 4Queen’s University, Belfast, BT7 1NN, UK 5The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK Correspondence to: Johan van der Molen ([email protected], [email protected]) Abstract. There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction and as biofuels. This study uses a 3D numerical model of hydrodynamics and biogeochemistry to 15 investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (northwest Scotland), and in the Rhine Plume (The Netherlands), as well as a hypothetical large- scale farm off the UK north Norfolk coast. -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sugar kelp (Saccharina latissima) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White & Charlotte Marshall 2007-09-06 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1375]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. & Marshall, C.E. 2007. Saccharina latissima Sugar kelp. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1375.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-06 Sugar kelp (Saccharina latissima) - Marine Life Information Network See online review for distribution map Buoy line with Saccharina latissima. -
Ber. Polarforsch. 201 (1996) ISSN 0176 - 5027 Katrin Iken
Ber. Polarforsch. 201 (1996) ISSN 0176 - 5027 Katrin Iken Alfred-Wegener-Institut füPolar- und Meeresforschung Postfach 12 01 61 Columbusstraß D - 27568 Bremerhaven Die vorliegende Arbeit ist die im wesentlichen unverändert Fassung einer Dissertation, die in der Sektion Biologie I bei Prof. Dr. W. Arntz angefertigt und 1995 dem Fachbereich 2 (BiologieIChemie) der UniversitäBremen vorgelegt wurde. Inhaltsverzeichnis ZUSAMMENFASSUNG .................................................................................... IV SUMMARY ......................................................................................................... VI 1. Einleitung ............................................................................................................1 2. Untersuchungsgebiet .........................................................................................4 2.1 Geographische Lage ...............................................................................4 2.2 Topographie ...........................................................................................4 2.3 Hydrographie .........................................................................................6 2.4 Zonierung antarktischer Makroalgen .....................................................6 2.5 Zeitpunkt und Ort der Probennahmen ....................................................7 3. Nahrungsbeziehungenzwischen Herbivoren und Makroalgen: Wer fri§was? ..................................................................................................10 -
The Rise of Laminaria Ochroleuca in the Western English Channel (UK) and Comparisons with Its Competitor and Assemblage Dominant Laminaria Hyperborea Dan A
Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea Dan A. Smale1,2, Thomas Wernberg2, Anna L. E. Yunnie1 & Thomas Vance3 1 Marine Biological Association of the United Kingdom, Plymouth, UK 2 UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, WA, Australia 3 PML Applications Ltd, Plymouth, UK Keywords Abstract Climate change; habitat-forming species; kelp forest; Laminariales; range expansion. The distribution of species is shifting in response to recent climate change. Changes in the abundance and distributions of habitat-forming species can have Correspondence knock-on effects on community structure, biodiversity patterns and ecological Dan A. Smale, Marine Biological Association processes. We empirically examined temporal changes in the abundance of the of the United Kingdom, The Laboratory, warm-water kelp Laminaria ochroleuca at its poleward range edge in the Wes- Citadel Hill, Plymouth PL1 2PB, UK. tern English Channel. Resurveys of historical sites indicated that the abundance E-mail: [email protected] of L. ochroleuca has increased significantly in recent decades. Moreover, exami- Accepted: 24 June 2014 nation of historical records suggested that L. ochroleuca has extended its distri- bution from sheltered coasts on to moderately wave-exposed open coasts, where doi: 10.1111/maec.12199 it now co-exists and competes with the assemblage dominant Laminaria hyper- borea. Proliferation of L. ochroleuca at its poleward range edge corresponds with a period of rapid warming in the Western English Channel. Preliminary com- parisons between L. -
Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. -
Results of Cultivation of Japanese Kelp (Saccharina Japonica ) in Primorsky Krai, Russia
International Journal of Nutrition and Food Sciences 2016; 5(3): 145-159 http://www.sciencepublishinggroup.com/j/ijnfs doi: 10.11648/j.ijnfs.20160503.11 ISSN: 2327-2694 (Print); ISSN: 2327-2716 (Online) Results of Cultivation of Japanese Kelp (Saccharina japonica ) in Primorsky Krai, Russia Delik D. Gabaev, Serge M. Dimitriev Academy of Sciences, A. V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Email address: [email protected] (D. D. Gabaev) To cite this article: Delik D. Gabaev, Serge M. Dimitriev. Results of Cultivation of Japanese Kelp (Saccharina japonica ) in Primorsky Krai, Russia. International Journal of Nutrition and Food Sciences. Vol. 5, No. 3, 2016, pp. 145-159. doi: 10.11648/j.ijnfs.20160503.11 Received : January 14, 2016; Accepted : March 25, 2016; Published : April 12, 2016 Abstract: Animals and plants, living near human settlements in the three climatic zones, accumulate substances that allow them to resist extreme environmental factors. By consuming these plants and animals, people strengthen the immune system that also facilitates their existence in harsh conditions. Many of the world known species appreciated for their medicinal properties inhabit Primorsky Krai, which is located in three climatic zones. On land, these are plants of the family of Araliaceae, including the well-known ginseng; in the sea, the Japanese sea cucumber and brown algae, including the Japanese kelp Saccharina (=Laminaria) japonica . This publication provides the results of cultivation of commercially valuable Japanese kelp by several technologies at sea-based farms in Russia. Keywords: Three Climatic Zones, Health Food, Forced Cultivation, Japanese Kelp, Saccharina (=Laminaria) japonica which was edited by Emperor Daigo (897-930) in Japan at 1. -
A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we -
Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report. -
Kelp Aquaculture
Aquaculture in Shared Waters Kelp Aquaculture Sarah Redmond1 ; Samuel Belknap2 ; Rebecca Clark Uchenna3 “Kelp” are large brown marine macroalgae species native to New England and traditionally wild harvested for food. There are three commercially important kelp species in Maine—sugar kelp (Saccharina latissima), winged kelp (Alaria esculenta), and horsetail kelp (Laminaria digitata). Maine is developing techniques for culturing kelp on sea farms as a way for fishermen and farmers to diversify their operations while providing a unique, high quality, nutritious vegetable seafood for new and existing markets. Kelp is grown on submerged horizontal long lines on leased sea farms from September to May, making it a “winter crop” for Maine. The simple farm design, winter season, and relatively low startup costs allow for new and existing sea farmers to experiment with this newly developing type of aquaculture on Maine’s coast. “Kelp” can refer to sugar kelp (Saccharina latissima), Alaria (Alaria esculenta), or horsetail kelp (Laminaria digitata). Sugar kelp has been cultivated in Maine for several years, and successful experimental cultivation has been done with species such as Alaria. These photos are examples of the cultivation stages of sugar kelp. Microscopic Seeded kelp line Kelp line at time of kelp seed harvest 1 Sarah Redmond • Marine Extension Associate, Maine Sea Grant College Program and University of Maine Cooperative Extension 33 Salmon Farm Road Franklin, ME • 207.422.6289 • [email protected] 2 Samuel Belknap • University of Maine • 234C South Stevens Hall Orono, ME • 207.992.7726 • [email protected] 3 Rebecca Clark Uchenna • Island Institute • Rockland, ME • 207.691.2505 • [email protected] Is there a viable market for Q: kelps grown in Maine? aine is home to a handful of consumers are looking for healthier industry, the existing producers and Mcompanies that harvest sea alternatives. -
Conditions for Staggering and Delaying Outplantings of the Kelps Saccharina Latissima and Alaria Marginata for Mariculture
Conditions for staggering and delaying outplantings of the kelps Saccharina latissima and Alaria marginata for mariculture Item Type Article Authors Raymond, Amy E. T.; Stekoll, Michael S. Citation Raymond, A. E. T., & Stekoll, M. S. (2021). Conditions for staggering and delaying outplantings of the kelps Saccharina latissima and Alaria marginata for mariculture. Journal of the World Aquaculture Society, 1–23. https://doi.org/10.1111/ jwas.12846 Publisher Wiley Journal Journal of the World Aquaculture Society Download date 24/09/2021 01:39:14 Link to Item http://hdl.handle.net/11122/12242 Received: 8 July 2020 Revised: 29 July 2021 Accepted: 2 August 2021 DOI: 10.1111/jwas.12846 APPLIED STUDIES Conditions for staggering and delaying outplantings of the kelps Saccharina latissima and Alaria marginata for mariculture Ann E. T. Raymond1 | Michael S. Stekoll2 1University of Alaska Fairbanks, Juneau Center, College of Fisheries and Ocean Sciences, Juneau, Alaska, USA 2University of Alaska Southeast and UAF Juneau Center, College of Fisheries and Ocean Sciences, Juneau, Alaska, USA Correspondence Ann E. T. Raymond, Jamestown S'Klallam Abstract Tribe Natural Resources Department, 1033 We describe a method for production of kelp using Old Blyn Hwy, Sequim, WA 98382 meiospore seeding creating flexibility for extended storage Email: [email protected] time prior to outplanting. One bottleneck to expansion of Funding information the kelp farming industry is the lack of flexibility in timing of Alaska Sea Grant, University of Alaska Fairbanks, Grant/Award Number: seeded twine production, which is dependent on the fertility NA18OAR4170078; Blue Evolution of wild sporophytes. We tested methods to slow gameto- phyte growth and reproduction of early life stages by manipulating temperature of the kelp Saccharina latissima. -
Marine Environmental Conditions Update Report
ISLANDMAGEE GAS STORAGE FACILITY Marine Environmental Conditions Update Report IBE1600/Rpt/01 Marine Environmental Conditions Update F02 9 December 2019 rpsgroup.com ISLANDMAGEE GAS STORAGE FACILITY Document status Version Purpose of document Authored by Reviewed by Approved by Review date D01 Marine Licencing DH MB AGB 29/10/2019 F01 Marine Licencing DH MB AGB 31/10/2019 F02 Marine Licencing DH MB AGB 09/12/2019 Approval for issue AGB 9 December 2019 © Copyright RPS Group Plc. All rights reserved. The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Plc, any of its subsidiaries, or a related entity (collectively 'RPS'), no other party may use, make use of, or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS for any use of this report, other than the purpose for which it was prepared. The report does not account for any changes relating to the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report. RPS accepts no responsibility for any documents or information supplied to RPS by others and no legal liability arising from the use by others of opinions or data contained in this report. -
Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1
4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells,