Product Brief: Intel® Atom™ Processor E3900 Series, Intel® Celeron
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-037 MAY 2019 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica- tions. Current characterized errata are available on request. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1- 800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Intel, the Intel logo, Intel Deep Learning Boost, Intel DL Boost, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. -
The Microarchitecture of the Pentium 4 Processor
The Microarchitecture of the Pentium 4 Processor Glenn Hinton, Desktop Platforms Group, Intel Corp. Dave Sager, Desktop Platforms Group, Intel Corp. Mike Upton, Desktop Platforms Group, Intel Corp. Darrell Boggs, Desktop Platforms Group, Intel Corp. Doug Carmean, Desktop Platforms Group, Intel Corp. Alan Kyker, Desktop Platforms Group, Intel Corp. Patrice Roussel, Desktop Platforms Group, Intel Corp. Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped ALU, deep pipelining provides an in-depth examination of the features and ABSTRACT functions of the Intel NetBurst microarchitecture. This paper describes the Intel® NetBurst™ ® The Pentium 4 processor is designed to deliver microarchitecture of Intel’s new flagship Pentium 4 performance across applications where end users can truly processor. This microarchitecture is the basis of a new appreciate and experience its performance. For example, family of processors from Intel starting with the Pentium it allows a much better user experience in areas such as 4 processor. The Pentium 4 processor provides a Internet audio and streaming video, image processing, substantial performance gain for many key application video content creation, speech recognition, 3D areas where the end user can truly appreciate the applications and games, multi-media, and multi-tasking difference. user environments. The Pentium 4 processor enables real- In this paper we describe the main features and functions time MPEG2 video encoding and near real-time MPEG4 of the NetBurst microarchitecture. We present the front- encoding, allowing efficient video editing and video end of the machine, including its new form of instruction conferencing. It delivers world-class performance on 3D cache called the Execution Trace Cache. -
Intel® Industrial Iot Workshop Security for Industrial Platforms
Intel® Industrial IoT workshop Security for industrial platforms Gopi K. Agrawal Security Architect IOTG Technical Sales & Marketing Intel Corporation Legal © 2018 Intel Corporation No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
Intel Atom® Processor C3000 Series for Embedded and Iot Applications: Product Brief
Product brief Internet of Things Intel Atom® Processor C3000 Series Expanding Intelligence and Flexibility at the Edge Scalable, dense-compute SoC for demanding IoT workloads From the factory foor to the energy grid, airplanes to supply chains, the sensors, controls, gateways, and other connected devices of Internet of Things (IoT) are driving the next industrial revolution. As IoT continues its explosive growth, the need for intelligent devices for more specialized applications is also growing exponentially. Industrial, energy, aerospace, robotics, public sector, and other customers with demanding IoT workloads want new ways to easily extract value from their data, reduce their time to market, and innovate connected technologies quickly and efciently. Moreover, they increasingly require reliable IoT solutions that bring maximum performance and greater capabilities to an ever-expanding array of challenging locations and operating conditions. The Intel Atom® processor C3000 series extends low-power Intel® architecture into new segments and accelerates IoT innovation across a wide range of demanding environments and use cases. With high performance per watt, low thermal design power (TDP) of 9.5W, and up to 20 confgurable high-speed input/output (HSIO) lanes, and pin-to-pin compatibility, this new system-on-a-chip (SoC) family delivers next-generation, multicore performance and scalability for a broad variety of low-power, high-density, and fanless designs. Multicore scalability With the Intel Atom processor C3000 series, customers are able to scale performance and achieve workload consolidation in situations and use cases that uP to require very low power, high density, and high I/O integration. Designed in an FCBGA 34mm x 28mm compact form factor, this SoC-based CPU is manufactured on Intel’s optimized 14nm process technology, available from 2 to 12 cores from 2.3X 1.6 to 2.0 GHz, and includes up to 256 GB DDR4 2133 MHz ECC (SODIMM, UDIMM, better PerforMANce or RDIMM) of addressable memory. -
Intel Atom® P5900 Processors for 5G Network Edge Acceleration
PRODUCT BRIEF | Intel Atom® P5900 Processors ADVANCED PERFORMANCE FOR 5G WIRELESS BASE STATIONS As the radio access network (RAN) infrastructure of wireless carriers evolves to meet the intense demands of 5G, additional compute is required at the edge of the network. Careful consideration is critical across the board—from overarching design down to the selection of key components in base transceiver station equipment—for 5G networks to reliably meet the demands of next-generation service opportunities with lower latencies, higher bandwidth, and increased network capacity. RAN INFRASTRUCTURE EVOLUTION Intel has never had a stronger or more comprehensive portfolio of solutions to enable the RAN. From Intel® Xeon® Scalable processors to Intel Atom® processors, FPGAs, ASICS, and more, Intel continues to deliver cutting-edge hardware for 5G infrastructure. Even so, it’s our significant investments in software that enable service providers to make the most of our hardware, from drivers and operating systems up through entire production-quality software stacks. This interconnected platform of hardware and software allows service providers to get to market quickly while still offering the flexibility needed to address various deployment scenarios. Furthermore, with the increasing adoption of innovations found in cloud deployments, service providers are realizing the benefits of extending a platform combining common cloud software with Intel® architecture-based hardware from the core to the edge. A common software ecosystem for platform virtualization and customer applications—using a common Intel instruction set architecture across the infrastructure—enables faster deployment of new software and features while also making new service offerings and revenue models possible. PRODUCT BRIEF | Intel Atom® P5900 Processors AN EXCITING NEW CLASS OF EDGE PROCESSORS Intel Atom P5900 processors are the first of an all-new class of high-throughput, low-latency Intel Atom P processors for high-density network edge and security solutions. -
The Intel X86 Microarchitectures Map Version 2.0
The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128 -
A Performance Analysis Tool for Intel SGX Enclaves
sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Nico Weichbrodt Pierre-Louis Aublin Rüdiger Kapitza IBR, TU Braunschweig LSDS, Imperial College London IBR, TU Braunschweig Germany United Kingdom Germany [email protected] [email protected] [email protected] ABSTRACT the provider or need to refrain from offloading their workloads Novel trusted execution technologies such as Intel’s Software Guard to the cloud. With the advent of Intel’s Software Guard Exten- Extensions (SGX) are considered a cure to many security risks in sions (SGX)[14, 28], the situation is about to change as this novel clouds. This is achieved by offering trusted execution contexts, so trusted execution technology enables confidentiality and integrity called enclaves, that enable confidentiality and integrity protection protection of code and data – even from privileged software and of code and data even from privileged software and physical attacks. physical attacks. Accordingly, researchers from academia and in- To utilise this new abstraction, Intel offers a dedicated Software dustry alike recently published research works in rapid succession Development Kit (SDK). While it is already used to build numerous to secure applications in clouds [2, 5, 33], enable secure network- applications, understanding the performance implications of SGX ing [9, 11, 34, 39] and fortify local applications [22, 23, 35]. and the offered programming support is still in its infancy. This Core to all these works is the use of SGX provided enclaves, inevitably leads to time-consuming trial-and-error testing and poses which build small, isolated application compartments designed to the risk of poor performance. -
Intel PSU Cage Replacement Process Support Guide
Intel® PSU Cage Replacement Process Support Guide A Guide for Technically Qualified Assemblers of Intel® 2U ATX Products Document No.: PSU-01 Revision No.: 002 Disclaimer Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not designed, intended or authorized for use in any medical, life saving, or life sustaining applications or for any other application in which the failure of the Intel product could create a situation where personal injury or death may occur. Intel may make changes to specifications and product descriptions at any time, without notice. Intel server boards contain a number of high-density VLSI and power delivery components that need adequate airflow for cooling. Intel's own chassis are designed and tested to meet the intended thermal requirements of these components when the fully integrated system is used together. It is the responsibility of the system integrator that chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific application and environmental conditions. Intel Corporation can not be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits. -
Intel® Itanium® Architecture Assembly Language Reference Guide
Intel® Itanium® Architecture Assembly Language Reference Guide Copyright © 2000 - 2003 Intel Corporation. All rights reserved. Order Number: 248801-004 World Wide Web: http://developer.intel.com Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide Page 2 Disclaimer and Legal Information Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Intel® Itanium® Architecture Assembly Language Reference Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. -
Intel Atom Processor E3800 Product Families in Retail
White Paper Intelligent Systems Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families in Retail Transform user experiences in entry retail devices with full HD video decode, improved graphics, quad-core compute performance, and built-in security Introduction Advanced features include: Intelligent devices that provide HD • Media: Scalable full HD video playback video capability, compelling graphics, includes support for 10 or more responsive performance, and security are simultaneous video streams. transforming in-store retail experiences. • Graphics: Gen 7 Intel® Graphics Today’s retail customers expect POS Architecture enables enhanced visual systems, interactive kiosks, and digital processing over previous-generation signs to support rich media and graphics Intel Atom processors. experience for timely and visually compelling digital promotions and a range • Power and Form Factor: SoC with of choices at checkout, with confidence smaller package size and industrial “The Intel Celeron processor and that the device provides security to temperature range is ideal for thin, protect transactional and personal data. light and environmentally adaptive Intel Atom processor E3800 entry retail devices. The Intel® Celeron® processor and Intel® product families provide full Atom™ processor E3800 product families • Compute: Quad-core processing1 HD simultaneous video decode for intelligent systems help bring these enables improved out-of-order compute capabilities to entry retail devices. performance for more responsive user capability, delivering interactive Compared to previous-generation Intel experiences. Celeron and Atom processors, this new 2-D and 3-D graphics with much • Security: Built-in hardware-assisted processor family provides significantly security enhancements include Intel® improved playback enabling improved media and graphics performance AES New Instructions (Intel® AES NI)2 and enables smaller, more power-efficient immersive visual experiences and Secure Boot. -
Intel® Atom™ Processor E3800 the Latest Low Power Platform E3800 Family Platform for Intelligent Systems
Intel® Atom™ Processor E3800 The Latest Low Power Platform E3800 Family Platform for Intelligent Systems tŚŝůĞĚĞƐŝŐŶĞĚƚŽďĞĂƚƌƵĞƚĞƐƚŽĨ/ŶƚĞů͛ƐƉĞƌĨŽƌŵĂŶĐĞŝŶƚŚĞƵůƚƌĂŵŽďŝůĞƐƉĂĐĞ͕^ŝůǀĞƌŵŽŶƚŝƐƚŚĞĮƌƐƚƚƌƵĞĂƌĐŚŝƚĞĐƚƵƌĞ ƵƉĚĂƚĞƚŽ/ŶƚĞů͛ƐƚŽŵƉƌŽĐĞƐƐŽƌƐŝŶĐĞŝƚƐŝŶƚƌŽĚƵĐƟŽŶŝŶϮϬϬϴ͘>ĞǀĞƌĂŐŝŶŐ/ŶƚĞů͛ƐĮƌƐƚϮϮŶŵƉƌŽĐĞƐƐĂŶĚĂǀĞƌLJůŽǁƉŽǁĞƌͲ ŵŝĐƌŽĂƌĐŚŝƚĞĐƚƵƌĞ͕^ŝůǀĞƌŵŽŶƚĂŝŵƐƐƋƵĂƌĞůLJĂƚƚŚĞůĂƚĞƐƚ<ƌĂŝƚĐŽƌĞƐĨƌŽŵYƵĂůĐŽŵŵĂŶĚZD͛ƐŽƌƚĞdžϭϱ͘ĂƐĞĚŽŶ ^ŝůǀĞƌŵŽŶƚ͕/ŶƚĞůΠŝŶƚƌŽĚƵĐĞƐϯϴϬϬƉƌŽĚƵĐƚĨĂŵŝůLJ͕ĂƐĞƌŝĞƐŽĨƐLJƐƚĞŵŽŶĐŚŝƉ;^ŽͿĚĞƐŝŐŶĞĚĨŽƌůŽǁͲƉŽǁĞƌ͕ĨĞĂƚƵƌĞͲƌŝĐŚ ĂŶĚŚŝŐŚůLJͲĐĂƉĂďůĞĂƉƉůŝĐĂƟŽŶƐ͘ ϯϴϬϬƉƌŽĚƵĐƚĨĂŵŝůLJƚĂŬĞƐƵƉƚŽĨŽƵƌ^ŝůǀĞƌŵŽŶƚĐŽƌĞƐ͕ĂŶĚĨŽƌƚŚĞĮƌƐƚƟŵĞŝŶĂŶƵůƚƌĂŵŽďŝůĞ/ŶƚĞů^Ž͕ŝƐƉĂŝƌĞĚǁŝƚŚ /ŶƚĞů͛ƐŽǁŶŐƌĂƉŚŝĐƐ/W͘/ŶŽƚŚĞƌǁŽƌĚƐ͕ƌĂƚŚĞƌƚŚĂŶƵƐŝŶŐĂ'WhďůŽĐŬĨƌŽŵ/ŵĂŐŝŶĂƟŽŶdĞĐŚŶŽůŽŐŝĞƐ͕E3800 product family leverages the same GPU architecture as the 3rdŐĞŶĞƌĂƟŽŶ/ŶƚĞůŽƌĞƉƌŽĐĞƐƐŽƌƐ;ĐŽĚĞŶĂŵĞĚ/ǀLJƌŝĚŐĞͿ͘ Silvermont Core Highlights Better Performance Better Power Efficiency 22nm Architecture 200 250 150 300 100 350 50 400 0 450 500 Out-of-order execuon engine Wider dynamic operang range 3D Tri-gate transistors tuned for New mul-core and system fabric Enhanced acve and idle power SoC products architecture management Architecture and design co-opmized with the process New IA instrucons extensions (Intel Core Westmere Level) Bay Trail: Not just for Atoms anymore E3800 product family combines a CPU based on Intel’s new Silver- mont architecture with a GPU that is architecturally similar to (but 4xPCIe* less powerful than) the HD 4000 graphics engine integrated in the 3rdŐĞŶĞƌĂƟŽŶ/ŶƚĞůΠŽƌĞƉƌŽĐĞƐƐŽƌƐůĂƵŶĐŚĞĚŝŶĞĂƌůLJϮϬϭϮ͘dŚĞƐĞ