United States Patent Office Patented Aug

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Aug 3,338,926 United States Patent Office Patented Aug. 29, 1967 1. 2 3,338,926 Sult in an appreciable amount of by-product formation PROCESS FOR THE HYDROLYSIS OF CYCLIC through esterification of free hydroxyl groups on the ACETALS AND KETALS nucleus or in the side chains (producing, for example, 21 Francisco Alvarez, John B. Siddall, and Augusto Ruiz, formoxy steroids which, if they also contain a 17a-hy Palo Alto, Calif., assignors to Syntex Corporation, droxyl group and are later hydrolyzed, will in part un Panamaa, Panama, a corporation of Panama dergo D-homo rearrangement no matter how mild the No Drawing. Filled May 2, 1966, Ser. No. 546,602 base used, or 116-formoxy steroids, which can only be 10 Claims. (C. 260-397.4) hydrolyzed back to the free alcohols under relatively drastic conditions, thus giving rise, again in the case of the This is a continuation-in-part of copending application O 17a-hydroxypregnanes, to an even greater amount of D Ser. No. 460,462, filed June 1, 1965, now abandoned. homo rearrangement), degradation of a dihydroxy-ace This invention relates to a process for the preparation tone side chain, if present, or destruction of acid-sensi of cyclopentanophenanthrene derivatives. tive groups elsewhere in the steroid molecule, or all of More particularly, this invention relates to a novel these, leading to poor yields of free dihydroxy final prod method for the conversion, in good yields and with a 5 uct contaminated with relatively large amounts of un minimum of by-product formation, of cyclic acetal and wanted by-products. ketal derivatives of dihydroxy steroids of the androstane, The present invention affords a practical solution to estrane, pregnane, 19-norpregnane, cholestane and Sapo these difficulties by providing a novel and efficient method genin series, wherein the hydroxyl groups are on adjacent for the conversion of steroidal cyclic acetal and ketal de or nonadjacent carbon atoms in the steroid nucleus or side 20 rivatives to the corresponding dihydroxy steroids. More chains, to the corresponding free dihydroxy steroids. particularly, we have now discovered, quite unexpectedly, The cyclic acetal and ketal derivatives which can be that by treating cyclic acetal and ketal derivatives of di converted to the corresponding dihydroxy steroids by the hydroxy steroids of the androstane, estrane, pregnane, 19 novel process of the present invention can be represented norpregnane, cholestane and sapogenin series with aque by the general formula: - 25 ous solutions of hydrogen halides at relatively low tem peratures, the corresponding dihydroxy steroids are ob R1 ~o R tained in greater yields and with less by-product contami / o, nation than had hitherto generally been possible using avO R3 I the known methods of hydrolyzing cyclic acetal and ketal wherein R represents the steroid nucleus, including the 30 derivatives. side chains and the carbon atoms to which the cyclic A further advantage of the novel process of the present acetal or ketal group is attached; the symbol a repre invention is that many acid-sensitive groupings elsewhere sents either the o- or the 3-configuration; R and R3, taken in the steroid molecule, such as hydroxyl groups, cyclo alone, can each represent hydrogen, a lower alkyl (includ propyl groups, and the like, are stable under the conditions ing substituted and unsubstituted lower alkyl and cyclo 35 employed. alkyl) group, an aryl (including substituted and unsubsti It is to be understood that by the term "aqueous solu tuted aryl, alkaryl and aralkyl) group or a monocyclic tions of hydrogen halides' is intended conventional hy heterocyclic (including substituted and unsubstituted het drohalic acids, particularly hydrofluoric and hydrochloric erocyclic) group; and R2 and R3, taken together with the acid. carbon atoms to which they are attached, can also repre 40 The novel process of the present invention is carried sent a cycloalkyl, or monocyclic heterocyclic group. out by adding the steroidal cyclic acetal or ketal deriva It has been known for some time that the reaction of tive to aqueous hydrohalic acid containing between 20% a dihydroxy steroid, wherein the hydroxyl groups are not and 90% by weight of hydrogen halide, preferably from too widely separated, with an aldehyde or ketone in the about 35% to about 55%. Generally the maximum con presence of a strong acid catalyst produces the corre 45 centration of hydrochloric acid is limited to 37% to 38% sponding cyclic acetal or ketal. by Weight at room temperature and at atmospheric pres In many cases, the formation of a cyclic acetal or ketal Sure. By increasing the pressure, the concentration of grouping produces steroid derivatives having enhanced hydrochloric acid can be increased, but the 37% to 38% therapeutic activity, and frequently such groupings will concentration is normally satisfactory. With hydrofluoric be introduced after various transformations have been 50 acid, aqueous solutions containing about 48% to 70% carried out elsewhere in the steroid molecule. However, of hydrogen fluoride are generally employed. Hydro these groupings also have potentially great value in the chloric and hydrofluoric acid are conveniently employed preparation of other steroid derivatives using reactions at reagent grade concentrations of about 38% and about which would normally affect unprotected hydroxyl groups. 48%, respectively. The amount of acid employed may For example, cyclic acetal and ketal groupings, and par 55 range from 10 mols or less to about 600 mois, prefer ticularly those which themselves contain no reactive ably from about 20 to about 60 mols of hydrochloric groupings, e.g., an isopropylidenedioxy grouping, are not acid and from about 20 to about 160 mols of hydrofluoric affected by submitting compounds containing them to acid, per mol of cyclic acetal or ketal. Generally the alkylation, acylation, ketalization, epoxidation, bromina process is executed at a temperature in the range of from tion, oxidation, reduction or certain acid-catalyzed rear 60 -30° C. to about 25 C. or higher, and preferably from rangements. about -5° C. to about 5 C. The reactants are stirred Nevertheless, up to the present time the difficulties en for a period of from about 30 minutes to about 30 hours countered in removing cyclic acetal and ketal groupings or longer with hydrofluoric acid and for 1 to 5 minutes following transformations elsewhere in the steroid mole after a solution is obtained with hydrochloric acid, gen cule constitute a serious drawback to their use as protec 65 erally from about 10 to 20 minutes. tive groups, especially in commercial production of ste If desired, inert organic solvents can be added to the roids. reaction mixture ranging in amounts up to 50% by vol The reported conditions for the removal of cyclic acetal ume, and more often ranging in amounts from about 25% and ketal groupings call for refluxing for prolonged peri 70 to 35% by volume, based on the total volume of the ods of time in concentrated aqueous formic acid of up reaction mixture. Among the solvents which may be to 90% strength. These conditions almost invariably re employed are Water-soluble ethers such as dioxane, tetra 3,838,926 3. 4. hydrofuran, tetrahydropyran, ethyleneglycol monoethyl 6a-methyl-116,16cy, 17c,21-tetrahydroxypregn-4-ene ether acetate, higher polyethylene and polypropylene 3,20-dione; glycol ethers, ether esters and the like, as well as mixtures 60-methyl-113,160,17a,21-tetrahydroxypregna-1,4-diene thereof. 3,20-dione; At the end of the reaction period, the dihydroxy steroid 60-methyl-160,170,21-trihydroxypregna-1,4-diene can be isolated in a conventional manner. For example, 3,11,20-trione; the reaction mixture is added to an ice cooled aqueous 6a-fluoro-119,160,170,21-tetrahydroxypregn-4-ene alkali solution, such as sodium or potassium carbonate 3,20-dione; or bicarbonate, containing an excess of alkali. As equally 6a-fluoro-11p,160,17a,21-tetrahydroxypregna-1,4-diene practical, the ice cooled aqueous alkali solution can be 10 3,20-dione; added to the reaction mixture. The product may be iso 6cy-fluoro-160,17a,21-trihydroxyphegn-4-ene lated by extracting it from the mixture with an organic 3,11,20-trione; solvent such as methylene chloride, diethyl ether, hexane 6cy-fluoro-160,170,21-trihydroxypregna-1,4-diene and the like. Additional purification can be effected 3,11,20-trione; through recrystallization and/or chromatography, if 5 9o-fluoro-11p,160,17a,21-tetrahydroxypregn-4-ene necessary. 3,20-dione; One class of cyclic acetals and ketals which can be 9cy-fluoro-11p,160,170,21-tetrahydroxypregna-1,4-diene hydrolyzed to the corresponding dihydroxy steroids by 3,20-dione; the novel process of the present invention encompasses 9oz-fluoro-160,17o,21-trihydroxypregna-1,4-diene the 160,17a-cyclic acetals and ketals of the pregnane and 20 3,11,20-trione; 19-nor pregnane series represented by the general formula: 60-methyl-9oz-fluoro-118,16a, 17o,21-tetrahydroxypregn 60-methyl-9a-fluoro-11p,16oz,17a,21-tetrahydroxypregna4-ene-3,20-dione; (H.R. 1,4-diene-3,20-dione; g=o 25 60-methyl-9a-chloro-116,160,17a,21-tetrahydroxy pregna-1,4-diene-3,20-dione; 6a,9o-difluoro-11p,160,17a,21-tetrahydroxypregn-4-ene 3,20-dione, and the like. Other classes of 160,17a-cyclic acetal and ketal-con 30 taining steroids besides that described hereinabove can also be efficiently hdyrolyzed by the novel process of the present invention. These include 96-steroids, such as 16a, II 17 or - isopropylidenedioxy - 96-A-pregnen-21-ol-3,11,20 35 trione or the
Recommended publications
  • UNITED STATES PATENT OFFICE 2,636,042 WATER-SOLUBLE HORMONE COMPOUNDS Ralph Salkin, Jackson Heights, N.Y., Assignor to S
    Patented Apr. 21, 1953 2,636,042 UNITED STATES PATENT OFFICE 2,636,042 WATER-SOLUBLE HORMONE COMPOUNDS Ralph Salkin, Jackson Heights, N.Y., assignor to S. B. Penick and Company, New York, N. Y., a corporation of Delaware No Drawing. Application July 8, 1949 Serial No. 103,759 5 Claims. (C. 260-39.4) 1. 2 My invention relates to an improvement in the ether, and the sulfate is then Salted out of the manufacture of water-soluble compounds of the aqueous solution by the addition of a, caustic estrane series, and in particular it is concerned solution under cooling. The liberated hormone With an improvement in the synthesis of alkali sulfate is extracted into a suitable Solvent, for and alkaline-earth metal salts of the sulfates of 5 instance butanol, pyridine being preferred how the estranes. ever. The hormone sulfate solution is exhaus The estranes to which my invention applies are tively extracted with ether to remove the solvent. steroids having a free hydroxyl group in the The resultant semicrystalline product is recrys 3-position and a hydroxy or keto group in the tallized from a dilute monohydric alcohol. Or 17-position of the molecule, such as estrone, O Water to give the pure sterol.ester. equilin, equilenin, estradiol and similar com In order to get pure ester Salts, I have found pounds. it essential that the tertiary amine-sulfur trioxide These products which are commonly known as adduct be absolutely pure when being reacted With conjugated estrogens can be obtained from nat the hormones. Improved yields and more readily ural sources such as the urine of pregnant mares purifiable light colored granular products result, or of stallions.
    [Show full text]
  • Labeling and Synthesis of Estrogens and Their Metabolites
    Labeling and Synthesis of Estrogens and Their Metabolites Paula Kiuru University of Helsinki Faculty of Science Department of Chemistry Laboratory of Organic Chemistry P.O. Box 55, 00014 University of Helsinki, Finland ACADEMIC DISSERTATION To be presented with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium A110 of the Department of Chemistry, A. I. Virtasen Aukio 1, Helsinki, on June 18th, 2005 at 12 o'clock noon Helsinki 2005 ISBN 952-91-8812-9 (paperback) ISBN 952-10-2507-7 (PDF) Helsinki 2005 Valopaino Oy. 1 ABSTRACT 3 ACKNOWLEDGMENTS 4 LIST OF ORIGINAL PUBLICATIONS 5 LIST OF ABBREVIATIONS 6 1. INTRODUCTION 7 1.1 Nomenclature of estrogens 8 1.2 Estrogen biosynthesis 10 1.3 Estrogen metabolism and cancer 10 1.3.1 Estrogen metabolism 11 1.3.2 Ratio of 2-hydroxylation and 16α-hydroxylation 12 1.3.3 4-Hydroxyestrogens and cancer 12 1.3.4 2-Methoxyestradiol 13 1.4 Structural and quantitative analysis of estrogens 13 1.4.1 Structural elucidation 13 1.4.2 Analytical techniques 15 1.4.2.1 GC/MS 16 1.4.2.2 LC/MS 17 1.4.2.3 Immunoassays 18 1.4.3 Deuterium labeled internal standards for GC/MS and LC/MS 19 1.4.4 Isotopic purity 20 1.5 Labeling of estrogens with isotopes of hydrogen 20 1.5.1 Deuterium-labeling 21 1.5.1.1 Mineral acid catalysts 21 1.5.1.2 CF3COOD as deuterating reagent 22 1.5.1.3 Base-catalyzed deuterations 24 1.5.1.4 Transition metal-catalyzed deuterations 25 1.5.1.5 Deuteration without catalyst 27 1.5.1.6 Halogen-deuterium exchange 27 1.5.1.7 Multistep labelings 28 1.5.1.8 Summary of deuterations 30 1.5.2 Enhancement of deuteration 30 1.5.2.1 Microwave irradiation 30 1.5.2.2 Ultrasound 31 1.5.3 Tritium labeling 32 1.6 Deuteration estrogen fatty acid esters 34 1.7 Synthesis of 2-methoxyestradiol 35 1.7.1 Halogenation 35 1.7.2 Nitration of estrogens 37 1.7.3 Formylation 38 1.7.4 Fries rearrangement 39 1.7.5 Other syntheses of 2-methoxyestradiol 39 1.7.6 Synthesis of 4-methoxyestrone 40 1.8 Synthesis of 2- and 4-hydroxyestrogens 41 2.
    [Show full text]
  • REVIEW Steroid Sulfatase Inhibitors for Estrogen
    99 REVIEW Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers Atul Purohit and Paul A Foster1 Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK 1School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK (Correspondence should be addressed to P A Foster; Email: [email protected]) Abstract Estrogens and androgens are instrumental in the maturation of in vivo and where we currently stand in regards to clinical trials many hormone-dependent cancers. Consequently,the enzymes for these drugs. STS inhibitors are likely to play an important involved in their synthesis are cancer therapy targets. One such future role in the treatment of hormone-dependent cancers. enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, Novel in vivo models have been developed that allow pre-clinical and dehydroepiandrosterone sulfate to estrone and dehydroe- testing of inhibitors and the identification of lead clinical piandrosterone respectively. These are the precursors to the candidates. Phase I/II clinical trials in postmenopausal women formation of biologically active estradiol and androstenediol. with breast cancer have been completed and other trials in This review focuses on three aspects of STS inhibitors: patients with hormone-dependent prostate and endometrial 1) chemical development, 2) biological activity, and 3) clinical cancer are currently active. Potent STS inhibitors should trials. The aim is to discuss the importance of estrogens and become therapeutically valuable in hormone-dependent androgens in many cancers, the developmental history of STS cancers and other non-oncological conditions.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN
    This dissertation has been Mic 61-2820 microfilmed exactly as received BESCH, Paige Keith. ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG. The Ohio State University, Ph.D., 1961 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Paige Keith Besch, B. S., M. S. The Ohio State University 1961 Approved by Katharine A. Brownell Department of Physiology DEDICATION This work is dedicated to my wife, Dr. Norma F. Besch. After having completed her graduate training, she was once again subjected to almost social isolation by the number of hours I spent away from home. It is with sincerest appreciation for her continual encouragement that I dedi­ cate this to her. ACKNOWLEDGMENTS I wish to acknowledge the assistance and encourage­ ment of my Professor, Doctor Katharine A. Brownell. Equally important to the development of this project are the experience and information obtained through the association with Doctor Frank A. Hartman, who over the years has, along with Doctor Brownell, devoted his life to the development of many of the techniques used in this study. It is also with extreme sincerity that I wish to ac­ knowledge the assistance of Mr. David J. Watson. He has never complained when asked to work long hours at night or weekends. Our association has been a fruitful one. I also wish to acknowledge the encouragement of my former Professor, employer and good friend, Doctor Joseph W.
    [Show full text]
  • Nomenclature of Steroids
    Pure&App/. Chern.,Vol. 61, No. 10, pp. 1783-1822,1989. Printed in Great Britain. @ 1989 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE* NOMENCLATURE OF STEROIDS (Recommendations 1989) Prepared for publication by G. P. MOSS Queen Mary College, Mile End Road, London El 4NS, UK *Membership of the Commission (JCBN) during 1987-89 is as follows: Chairman: J. F. G. Vliegenthart (Netherlands); Secretary: A. Cornish-Bowden (UK); Members: J. R. Bull (RSA); M. A. Chester (Sweden); C. LiCbecq (Belgium, representing the IUB Committee of Editors of Biochemical Journals); J. Reedijk (Netherlands); P. Venetianer (Hungary); Associate Members: G. P. Moss (UK); J. C. Rigg (Netherlands). Additional contributors to the formulation of these recommendations: Nomenclature Committee of ZUB(NC-ZUB) (those additional to JCBN): H. Bielka (GDR); C. R. Cantor (USA); H. B. F. Dixon (UK); P. Karlson (FRG); K. L. Loening (USA); W. Saenger (FRG); N. Sharon (Israel); E. J. van Lenten (USA); S. F. Velick (USA); E. C. Webb (Australia). Membership of Expert Panel: P. Karlson (FRG, Convener); J. R. Bull (RSA); K. Engel (FRG); J. Fried (USA); H. W. Kircher (USA); K. L. Loening (USA); G. P. Moss (UK); G. Popjiik (USA); M. R. Uskokovic (USA). Correspondence on these recommendations should be addressed to Dr. G. P. Moss at the above address or to any member of the Commission. Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (01989 IUPAC), is printed.
    [Show full text]
  • Tailed Deer (Odocoileus Virginianus) by Immunoassay of Steroid Hormones Metabolytes in Feces
    Open Access Journal of Science Mini Review Open Access A study on reproductive endocrinology of white- tailed deer (Odocoileus virginianus) by immunoassay of steroid hormones metabolytes in feces Volume 2 Issue 4 - 2018 Summary The objective of this study was carried out a documentary review on studies about Rubén Cornelio Montes-Perez monitoring endocrine activity of white-tailed deer (Odocoileus virginianus) by Facultad de Medicina Veterinaria y Zootecnia, Universidad immunoassay of feces to diagnose ovarian cycle activity, sex allocation and pregnancy Autonoma de Yucatan, Mexico diagnostics was conducted. The results indicated that it is feasible to monitor reproductive endocrine activity by estimating gonadic steroid metabolytes in urine and Correspondence: Rubén Cornelio Montes Perez, Facultad feces, although the results are not consistent due to level variations of metabolytes in de Medicina Veterinaria y Zootecnia, Universidad Autonoma de feces and also due to the pregnancy and sex allocation diagnostics efficiency. Several Yucata, Carretera Mérida-Xmatkuil km 15.5, CP. 97315. Merida, factors determine this variability, therefore, it is necessary to optimize technologies Yucatan, Mexico, Tel 52 9992621918, and /or test strategies to standardize sampling methods, to obtain more reliable results. Email [email protected] Keywords: white-tailed deer, steroid metabolytes, endocrinology studies, non- Received: July 06, 2018 | Published: July 19, 2018 invasive methods Introduction ml to day 23 and undetectable values at day 26, which is the average time of the estrous cycle. They concluded that the levels, pattern of Reproduction of white-tailed deer (Odocoileus virgininianus) can changes and individual variation of blood progestin of the white tailed occur all year round in various South American countries; the highest female are similar to those reported for domestic sheep.
    [Show full text]
  • Antiviral Drug
    Suraj Punj Journal For Multidisciplinary Research ISSN NO: 2394-2886 Vibrational spectra of 1- methylestin-3 thosomicarbozole (methisazole): Antiviral Drug Dr. DB Singh*, Kiran Pandey, Pragya Singh, Deepali Singh, Madhusmita Singh, DEEPIKA NISHAD Micro molecular and Bio physics Laboratory; Department Of Physics; DSMNR University; Lucknow. Abstract: 1-methylestin-3 thosomicarbozole (methisazole) is a chemical compound that shows the property of Antiviral Drug. A complete assignment of fundamental vibration frequencies has been made, and the spectra have been interpreted in detail. The non-planar frequencies have been calculated with the aid of force constants determined for related molecules. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP/6-31G methods and basis set combinations. The optimized geometric structure of 1- methylestin-3 thosomicarbozole (methisazole) has been studied by using Density Functional Theory (DFT). On the basis of ground and excited state geometries, the absorption spectra have been calculated using the DFT method. To understand the Non-Linear Optical properties of 1- methylestin-3 thosomicarbozole (methisazole), we computed dipole moment (μ) ,using B3LYP density functional theory method in conjunction with 6-31G basis set. Keywords: FTIR, FT-Raman, DFT, HOMO, LUMO, Vibrational spectra, antiviral. Volume 9, Issue 4, 2019 Page No: 31 Suraj Punj Journal For Multidisciplinary Research ISSN NO: 2394-2886 Introduction: 1-methylestin-3 thosomicarbozole (methisazole) is a chemical compound that shows the property of Antiviral Drug. The optimized geometrical compound of antiviral activity, this antiviral drug design is to identify viral proteins, or parts of proteins, that can be disabled.
    [Show full text]
  • Full Text (PDF)
    The Journal of Neuroscience, April 4, 2018 • 38(14):3377–3387 • 3377 Viewpoints Excreted Steroids in Vertebrate Social Communication Wayne I. Doyle and XJulian P. Meeks University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111 Steroids play vital roles in animal physiology across species, and the production of specific steroids is associated with particular internal biological functions. The internal functions of steroids are, in most cases, quite clear. However, an important feature of many steroids (their chemical stability) allows these molecules to play secondary, external roles as chemical messengers after their excretion via urine, feces, or other shed substances. The presence of steroids in animal excretions has long been appreciated, but their capacity to serve as chemosignals has not received as much attention. In theory, the blend of steroids excreted by an animal contains a readout of its own biological state. Initial mechanistic evidence for external steroid chemosensation arose from studies of many species of fish. In sea lampreys and ray-finned fishes, bile salts were identified as potent olfactory cues and later found to serve as pheromones. Recently, we and others have discovered that neurons in amphibian and mammalian olfactory systems are also highly sensitive to excreted glucocor- ticoids, sex steroids, and bile acids, and some of these molecules have been confirmed as mammalian pheromones. Steroid chemosen- sation in olfactory systems, unlike steroid detection in most tissues, is performed by plasma membrane receptors, but the details remain largely unclear. In this review, we present a broad view of steroid detection by vertebrate olfactory systems, focusing on recent research in fishes, amphibians, and mammals.
    [Show full text]
  • Bp501t Medchem -Unit
    Bachelor of Pharmacy (B. Pharm) SEMESTER:5TH Subject: MEDICINAL CHEMISTRY-II CODE: BP501T UNIT:IV UNIT: IV 4. Drugs acting on Endocrine system 4.1. Introduction to steroids 4.1.1. Classification of Steroids 4.1.2. Nomenclature, 4.1.3. Stereochemistry 4.1.4. Metabolism of steroids 4.2. Sex hormones: 4.2.1. Testosterone, 4.2.2. Nandralone, 4.2.3. Progestrones, 4.2.4. Oestriol, 4.2.5. Oestradiol, 4.2.6. Oestrione, 4.2.7. Diethyl stilbestrol. 4.3. Drugs for erectile dysfunction 4.3.1. Sildenafil 4.3.2. Tadalafil 4.4. Oral contraceptives 4.4.1. Mifepristone 4.4.2. Norgestril 4.4.3. Levonorgestrol 4.5. Corticosteroids 4.5.1. Cortisone 4.5.2. Hydrocortisone 4.5.3. Prednisolone 4.5.4. Betamethasone 4.5.5. Dexamethasone 4.6. Thyroid and antithyroid drugs 4.6.1. L-Thyroxine 4.6.2. L-Thyronine 4.6.3. Propylthiouracil 4.6.4.Methimazole 4. Endocrine system The endocrine system helps to maintain internal homeostasis through the use of endogenous chemicals known as hormones. A hormone is typically regarded as a chemical messenger that is released into the bloodstream to exert an effect on target cells located some distance from the hormonal release site. The endocrine system is a series of glands that produce hormones which regulate respiration, metabolism, growth and development, tissue function, sexual function, reproduction etc. Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testes, thyroid gland, parathyroid gland, hypothalamus and adrenal glands (Fig.
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • United States Patent Office Patented May 5, 1970
    3,510,477 United States Patent Office Patented May 5, 1970. 1. 2 3,510,477 a carboxylic acyl group having from one to about twelve 22-ETHYLENE-3-OXO-STEROIDS carbon atoms. AND INTERMEDIATES When the 4'-hydroxyspirosteroid-2,4'-m-dioxan-3-one Andrew John Manson, Beaconsfield, Quebec, Canada, as or ester thereof is subjected to mild alkaline conditions signor to Sterling Drug Inc., New York, N.Y., a cor the dioxane ring is cleaved to produce a 2-methylene-3- poration of Delaware oxo-steroid (III). The mild alkaline conditions are pro No Drawing. Continuation-in-part of application Ser. No. duced by contacting the steroid with a weak inorganic 502,394, Oct. 22, 1965. This application Oct. 4, 1967, Ser. No. 672,713 base, for example, an alkali metal carbonate or aluminum Claims priority, application Great Britain, Oct. 17, 1966, oxide. 46,383/66 0 The 2-methylene-3-oxo-steroid reacts with diazometh Int. C. C07c 173/10, 169/22, 169/12 ane to give a spirosteroid-2,3'(2'o)-1-pyrazolin-3-one U.S. C. 260-239.5 39 Claims (IV-A). The latter may in part rearrange to the isomeric spirosteroid-2,3’ (2'oz) - 5 - pyrazolin - 3 - one (IV-B) under the reaction conditions and work-up procedures ABSTRACT OF THE DISCLOSURE 5 used. The pyrazolines (IV-A and IV-B) in acid medium, or by simple pyrolysis, lose nitrogen and are converted to 2,2-ethylene-3-oxo-steroids are prepared starting from a 2,2-ethylene-3-oxo-steroid (V).
    [Show full text]
  • New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies
    molecules Article New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies Catarina Canário 1 , Mariana Matias 1, Vanessa Brito 1, Adriana O. Santos 1, Amílcar Falcão 2,3 , Samuel Silvestre 1,4,* and Gilberto Alves 1 1 CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; [email protected] (C.C.); [email protected] (M.M.); [email protected] (V.B.); [email protected] (A.O.S.); [email protected] (G.A.) 2 Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; [email protected] 3 CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal 4 CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal * Correspondence: [email protected] Abstract: The interest in the introduction of the oxime group in molecules aiming to improve their biological effects is increasing. This work aimed to develop new steroidal oximes of the estrane series with potential antitumor interest. For this, several oximes were synthesized by reaction of hydroxylamine with the 17-ketone of estrone derivatives. Then, their cytotoxicity was evaluated in six cell lines. An estrogenicity assay, a cell cycle distribution analysis and a fluorescence microscopy study with Hoechst 3358 staining were performed with the most promising compound. In addition, molecular docking studies against estrogen receptor α, steroid sulfatase, 17β-hydroxysteroid dehy- drogenase type 1 and β-tubulin were also accomplished. The 2-nitroestrone oxime showed higher Citation: Canário, C.; Matias, M.; Brito, V.; Santos, A.O.; Falcão, A.; cytotoxicity than the parent compound on MCF-7 cancer cells.
    [Show full text]