Speciation and Recessive Mutations for BMC Biology

Total Page:16

File Type:pdf, Size:1020Kb

Speciation and Recessive Mutations for BMC Biology Essay: On the close relationship between speciation, inbreeding and recessive mutations. Etienne Joly, [email protected], Toulouse, September 2010 All the ideas developed in this essay are relatively simple, and most of them are related to many Foreword previously published works. So much work, however, This past year, 2009, was the Darwin year, celebrating has already been published on evolution and speciation the 200th anniversary of Charles Darwin's birth, and 150 that an autodidactic newcomer such as myself could years since the publication of his fabulous milestone not hope to read, let alone understand and remember all book, ‘The Origin of Species’ (to which I will the primary papers published previously on evolution subsequently refer to as ‘The Origin’). At the start of and speciation. If I have failed to acknowledge 2009, I was inhabited by a nagging ethical concern : how previous works developing ideas related to those put would humans deal with a situation where a group of forward here, the reader can be assured that this was individuals found themselves fertile among one another, not done maliciously but simply as a result of my but with limited fertility with the rest of the human race ? relative naivety on the subject. I do, however, hold the In other words, could speciation occur within the human firm conviction that, if some of the ideas developed in race ? This concern sprouted from the idea that this essay prove to be correct and relatively novel, it chromosomal rearrangements seemed to me like a very was only possible because of this naivety. probable initial step of a speciation process, since systematic survey of the human populations have actually Because, as a rule, I have adopted the principle of shown that such rearrangements are relatively frequent ( never citing a paper that I have not read, numerous frequency of the order of 1/1000, [1] ). Furthermore, times during the writing of this essay, I have found given the amazing success of the human race, having myself unable to decide what particular paper to cite as resulted in the huge numbers of human beings currently the appropriate original source of a particular concept living on our planet, and given the amazing propensity of or observation. Although I have tried to read as many nature to generate new species, I felt that the chances primary papers as I could rather than reviews, I found must be quite high that speciation could occur within the that I simply could not read everything. In addition, human population. most books, and also many papers were not available Most scientist concerned with evolution and to me in our institute's library or freely online (As speciation would probably not share those concerns another rule, I refuse to pay for online access, because I because the commonly held view is that speciation is firmly believe that all primary research papers should most often allopatric, i.e. it occurs when populations of be freely available to all). In such situations when I had individuals evolve separately from one another for a not managed to read the primary papers (for whatever sufficiently long time that they would no longer breed reason), I have very often chosen to cite the very efficiently with one another when they are reunited, comprehensive et quite recent reference book and the mobility of modern humans would be very "Speciation" by Coyne and Orr (2004), and to refer to effective at countering this type of phenomenon. it as ‘C&O’, with the indication of the appropriate Contrarily to these views, I believe that, if chapter or page number. reproductive barriers arise, they are basically Nature Precedings : hdl:10101/npre.2010.5003.2 Posted 20 Oct 2010 equivalent to other characters, and must therefore have The ideas presented here are relevant to many, if not been selected for. In other words, there must be most, subjects related to speciation and evolution. conditions where it becomes advantageous for groups Another difficulty I have encountered in the writing of of individuals to stop breeding with the ancestral this essay is that of keeping the discussion focalised on population. The main conclusion that I reach by the the main subject of this essay, i.e. that new species do reflections developed in this essay is that the process of not arise by splitting in separate branches, but by speciation is primarily driven by advantageous “budding” away from the ancestral population as a recessive mutations, and that those will, in turn result of inbreeding among a limited number of promote reproductive barriers, favouring inbreeding. individuals. As a solution, for discussing several issues This past year has seen the publication of a plethora that seemed either too technical or rather peripheral to of review articles on the subject of evolution and this main subject, I have chosen to treat those as speciation, which have allowed me to start catching up separate short pieces which are provided either as on these vast subjects, and to mature my reflections on footnotes, or as addenda at the end of this essay. the mechanisms involved in speciation. The reading of these reviews had also allowed me to confirm that More complex subjects, such as evolvability, the those ideas I have developed are in disagreement with origins of life and of sexual reproduction, group level the generally held views, i.e. that allopatric speciation selection and altruism would, however, each have is the most common and probable route for the warranted whole essays, and it was beyond my appearance of new species. capacities to cover all those issues simultaneously. I have thus had to put back dealing with those other issues to later dates. 28/09/10 1 Abstract: One of the important reasons for this failure was related to an issue to which he alluded to repeatedly in Whilst the principle of adaptive evolution is his book, which is that species are basically impossible unanimously recognised as being caused by the process to define. The main problem, which he acknowledged of natural selection favouring the survival and/or himself, and stays whole today, lies in the fuzzy limit reproduction of individuals having acquired new between species and varieties: “From these remarks it advantageous traits, a consensus has proven much will be seen that I look at the term species, as one harder to find regarding the actual origin of species. arbitrarily given for the sake of convenience to a set of Indeed, since speciation corresponds to the individuals closely resembling each other, and that it establishment of reproductive barriers, it is difficult to does not essentially differ from the term variety, which see how it could bring a selective advantage because it is given to less distinct and more fluctuating forms. The amounts to a restriction in the opportunities to breed term variety, again, in comparison with mere with as many and/or as diverse partners as possible. In individual differences, is also applied arbitrarily, and this regard, Darwin himself did not believe that for mere convenience sake.” (The Origin, p. 52 mid Ch reproductive barriers could be selected for, and today II). most evolutionary biologists still believe that One of the most important concepts that derives from speciation can only occur through a process of the work of Darwin is that the process of life is one of separation allowing two populations to diverge constant evolution, which explains why so few of the sufficiently to become infertile with one another. I do, life forms that occupied the earth 20 millions ago are however, take the view that, if so much speciation has still around today. The somewhat uncomfortable but occurred, and still occurs around us, it cannot be a inescapable conclusion from this is that the existence consequence of passive drift but must result from a of every single one of the millions of species that selection process, whereby it is advantageous for surround us, including ours, must also be transitory, groups of individuals to reproduce preferentially with and this probably contributes to the difficulty that one another and reduce their breeding with the rest of many humans have in accepting the theory of the population. evolution, in addition to the fact that it also brings In this essay, I propose a model whereby new species serious questions as to the existence of an almighty arise by “budding” from an ancestral stock, via a God. The processes of evolution and speciation are, process of inbreeding among small numbers of however, very slow ones, and the 5000 years of human individuals, driven by the occurrence of advantageous history1 do not amount to even a tick on the clock of recessive mutations. Since the phenotypes associated to evolutionary times, and to our human eyes, the stability such mutations can only be retained in the context of of the world thus appears as if it should stay the same inbreeding, it is the pressure of the ancestral stock for ever, and so with the species that occupy it. The which will promote additional reproductive barriers, fact that species are not stable entities, but in constant and ultimately result in complete separation of a new evolution is another factor that adds to the difficulty of species. I thus contend that the phenomenon of defining them. speciation would be driven by mutations resulting in Initially, species were recognised and defined by the advantageous loss of certain functions, whilst naturalists and palaeontologists mostly in relation to adaptive evolution would correspond to gains of their anatomical features, and it is on the basis of these Nature Precedings : hdl:10101/npre.2010.5003.2 Posted 20 Oct 2010 function that would, most of the time be dominant.
Recommended publications
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
    G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes.
    [Show full text]
  • Allopatric Speciation with Little Niche Divergence Is Common Among
    Journal of Biogeography (J. Biogeogr.) (2016) 43, 591–602 ORIGINAL Allopatric speciation with little niche ARTICLE divergence is common among alpine Primulaceae Florian C. Boucher1*, Niklaus E. Zimmermann2,3 and Elena Conti1 1Institute of Systematic Botany, University of ABSTRACT Zurich,€ 8008 Zurich,€ Switzerland, 2Dynamic Aim Despite the accumulation of cases describing fast radiations of alpine Macroecology, Swiss Federal Research plants, we still have limited understanding of the drivers of speciation in alpine Institute WSL, 8903 Birmensdorf, Switzerland, 3Department of Environmental floras and of the precise the timing of their diversification. Here, we investi- Systems Science, Swiss Federal Institute of gated spatial and temporal patterns of speciation in three groups of alpine Technology ETH, CH-8092 Zurich,€ Primulaceae. Switzerland Location Mountains of the European Alpine System. Methods We built a new phylogeny of Primulaceae including all species in three focal groups: Androsace sect. Aretia, Primula sect. Auricula and Soldanella. Combining phylogenetic information with a detailed climatic data set, we investigated patterns of range and ecological overlap between sister-species using an approach that takes phylogenetic uncertainty into account. Finally, we investigated temporal trajectories of diversification in the three focal groups. Results We found that a large majority of sister-species pairs in the three groups are strictly allopatric and show little differences in substrate and cli- matic preferences, a result that was robust to phylogenetic uncertainty. While rates of diversification have remained constant in Soldanella, both Androsace sect. Aretia and Primula sect. Auricula showed decreased diversification rates in the Pleistocene compared to previous geological epochs. Main conclusions Allopatric speciation with little niche divergence appears to have been by far the most common mode of speciation across the three groups studied.
    [Show full text]
  • Species Change Over Time
    KEY CONCEPT Species change over time. BEFORE, you learned NOW, you will learn • Fossils are evidence of earlier • About early ideas and observa- life tions on evolution • More complex organisms have • How Darwin developed his developed over time theory of natural selection • Mass extinctions contributed to • How new species arise from the development of Earth’s older species history VOCABULARY THINK ABOUT evolution p. 797 How have telephones changed over time? natural selection p. 801 adaptation p. 802 Today people across the world can speciation p. 804 communicate in many different ways. One of the most common ways is over the telephone. Looking at the two pictures, can you describe how this form of communication has changed over time? Scientists explore the concept of evolution. MAIN IDEA AND DETAILS In a general sense, evolution involves a change over time. You could Make a chart for the main say that the way humans communicate has evolved. Certainly idea scientists explore the concept of evolution. telephones have changed over time. The first telephones were the size Include details about scien- of a shoebox. Today a telephone can fit in the palm of your hand and tists’ observations. can send images as well as sound. In biology,evolution refers to the process though which species change over time. The change results from a change in the genetic material of an organism and is passed from one generation to the next. Check Your Reading What is evolution? Chapter 23: History of Life 797 Early Ideas reading tip In the early 1800s, a French scientist named Jean Baptiste de Lamarck The word acquire comes was the first scientist to propose a model of how life evolves.
    [Show full text]
  • Speciation in Geographical Setting
    Speciation Speciation 2019 2019 The degree of reproductive isolation Substantial variation exists in among geographical sets of species - anagenesis populations within an actively 1859 1859 evolving species complex is often Achillea - yarrow tested by crossing experiments — as in the tidy tips of California 100K bp 100K bp back in time back in time back Rubus parviforus K = 4 mean population assignment 2 mya 2 mya ID CO WI_Door 5 mya BC_Hixton BC_MtRob WI_BruleS 5 mya BC_McLeod CA_Klamath MI_Windigo WA_Cascade WA_BridgeCr SD_BlackHills OR_Willamette MI_Drummond Speciation Speciation 2019 Reproductive isolation will ultimately stop all Although simple in concept, the recognition of species and thus the definition genetic connections among sets of populations of what are species have been controversial — more than likely due to the – cladogenesis or speciation continuum nature of the pattern resulting from the process of speciation 1859 Example: mechanical isolation via floral shape changes and pollinators between two parapatric species of California Salvia (sage) 100K bp back in time back 2 mya S. mellifera 5 mya Salvia apiana 1 Speciation Speciation Although simple in concept, the recognition of species and thus the definition Animal examples of speciation often show of what are species have been controversial — more than likely due to the clear reproductive barriers - hence zoologists continuum nature of the pattern resulting from the process of speciation preference (as opposed to botanists) for the Reproductive isolating Biological
    [Show full text]
  • Allopatric Speciation
    Lecture 21 Speciation “These facts seemed to me to throw some light on the origin of species — that mystery of mysteries”. C. Darwin – The Origin What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. • barriers also occur if hybrids are inviable or sterile – this is postzygotic isolation. Modes of Speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation Allopatric Speciation ‘‘The phenomenon of disjunction, or complete geographic isolation, is of considerable interest because it is almost universally believed to be a fundamental requirement for speciation.’’ Endler (1977) Modes of Speciation 1.
    [Show full text]
  • How Important Are Structural Variants for Speciation?
    G C A T T A C G G C A T genes Review How Important Are Structural Variants for Speciation? Linyi Zhang 1,*, Radka Reifová 2, Zuzana Halenková 2 and Zachariah Gompert 1 1 Department of Biology, Utah State University, Logan, UT 84322, USA; [email protected] 2 Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (R.R.); [email protected] (Z.H.) * Correspondence: [email protected] Abstract: Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribu- tion of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation. Citation: Zhang, L.; Reifová, R.; Keywords: reproductive isolation; hybridization; suppressed recombination Halenková, Z.; Gompert, Z.
    [Show full text]
  • A Theory of Evolution Above the Species Level (Paleontology/Paleobiology/Speciation) STEVEN M
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 2, pp. 646-650, February 1975 A Theory of Evolution Above the Species Level (paleontology/paleobiology/speciation) STEVEN M. STANLEY Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 Communicated by Hanm P. Eugster, December 11, 1974 ABSTRACT Gradual evolutionary change by natural lished species are seen as occasionally becoming separated by selection operates so slowly within established species to form new species. Most isolates become that it cannot account for the major features of evolution. geographic barriers Evolutionary change tends to be concentrated within extinct, but occasionally one succeeds in blossoming into a speciation events. The direction of transpecific evolution is new species by evolving adaptations to its marginal environ- determined by the process of species selection, which is ment and diverging to a degree that interbreeding with the analogous to natural selection but acts upon species within original population is no longer possible. Mayr has empha- higher taxa rather than upon individuals within popula- tions. Species selection operates on variation provided sized the stability of the genotype of a typical established by the largely random process of speciation and favors species. Most species occupy heterogeneous environments species that speciate at high rates or survive for long within which selection pressures differ from place to place and periods and therefore tend to leave many daughter species. oppose each other through gene flow. Furthermore, biochemi- Rates of speciation can be estimated for living taxa by cal systems interact in complex ways. Most genes affect means of the equation for exponential increase, and are clearly higher for mammals than for bivalve mollusks.
    [Show full text]
  • The Temporal Dimension of Marine Speciation
    Evol Ecol DOI 10.1007/s10682-011-9488-4 ORIGINAL PAPER The temporal dimension of marine speciation Richard D. Norris • Pincelli M. Hull Received: 2 September 2010 / Accepted: 7 May 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Speciation is a process that occurs over time and, as such, can only be fully understood in an explicitly temporal context. Here we discuss three major consequences of speciation’s extended duration. First, the dynamism of environmental change indicates that nascent species may experience repeated changes in population size, genetic diversity, and geographic distribution during their evolution. The present characteristics of species therefore represents a static snapshot of a single time point in a species’ highly dynamic history, and impedes inferences about the strength of selection or the geography of spe- ciation. Second, the process of speciation is open ended—ecological divergence may evolve in the space of a few generations while the fixation of genetic differences and traits that limit outcrossing may require thousands to millions of years to occur. As a result, speciation is only fully recognized long after it occurs, and short-lived species are difficult to discern. Third, the extinction of species or of clades provides a simple, under-appre- ciated, mechanism for the genetic, biogeographic, and behavioral ‘gaps’ between extant species. Extinction also leads to the systematic underestimation of the frequency of spe- ciation and the overestimation of the duration of species formation. Hence, it is no surprise that a full understanding of speciation has been difficult to achieve. The modern synthe- sis—which united genetics, development, ecology, biogeography, and paleontology— greatly advanced the study of evolution.
    [Show full text]
  • Origin of Species Before Origin of Life: the Role of Speciation in Chemical Evolution
    life Review Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution Tony Z. Jia 1,2,* , Melina Caudan 1 and Irena Mamajanov 1,* 1 Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; [email protected] 2 Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, WA 98154, USA * Correspondence: [email protected] (T.Z.J.); [email protected] (I.M.) Abstract: Speciation, an evolutionary process by which new species form, is ultimately responsible for the incredible biodiversity that we observe on Earth every day. Such biodiversity is one of the critical features which contributes to the survivability of biospheres and modern life. While speciation and biodiversity have been amply studied in organismic evolution and modern life, it has not yet been applied to a great extent to understanding the evolutionary dynamics of primitive life. In particular, one unanswered question is at what point in the history of life did speciation as a phenomenon emerge in the first place. Here, we discuss the mechanisms by which speciation could have occurred before the origins of life in the context of chemical evolution. Specifically, we discuss that primitive compartments formed before the emergence of the last universal common ancestor (LUCA) could have provided a mechanism by which primitive chemical systems underwent speciation. In particular, we introduce a variety of primitive compartment structures, and associated functions, that may have plausibly been present on early Earth, followed by examples of both discriminate and indiscriminate speciation affected by primitive modes of compartmentalization.
    [Show full text]
  • Biology 3 Origin and Diversity of Life
    Biology 3 Origin and Diversity of Life Dr. Terence Lee What is Life? Virus? Ice Crystal? 1 What is necessary for Life? CONDITIONS ON EARTH AT THE TIME LIFE BEGAN The early atmosphere differed from that of today, and contained large amounts of carbon dioxide, nitrogen, methane, ammonia, hydrogen, and hydrogen sulfide. Small organic molecules eventually formed, providing the building blocks of life. THE UREY-MILLER EXPERIMENT In 1953, Stanley Miller and Harold Urey developed a simple four- step experiment that demonstrated how complex organic molecules could have arisen in earth’s early environment. 2 THE UREY-MILLER EXPERIMENT 1 They created a model of the chemicals present in the "warm little pond" and atmosphere early in earth's history: H 2, CH 4 (methane), and NH 3 (ammonia). 2 The atmosphere was subjected to sparks, to simulate lightning. 3 The atmosphere was cooled so that any compounds in it would rain back down into the water. 4 They examined the water, looking for organic molecules. Electrical charge 2 1 3 Cool 4 Heat Within a matter of days they discovered many organic molecules (including five different amino acids) in their primordial sea. RNA World Hypothesis • The world may have been filled with RNA- based life… 3 Why are cell membranes important? • Allow for higher concentrations of chemicals inside the cell relative to the outside. WHAT MAKES A SPECIES? SPECIES ARE • populations of organisms that interbreed with each other, • or could possibly breed, under natural conditions, • and are reproductively isolated from other such groups. Reproductive Isolation • Hybrids are bad. 4 Reproductive Isolation • Two ways to prevent hybrids: 1.
    [Show full text]
  • Evolution 2 Speciation
    Evolution 2 Evolution Speciation • The evolution of life is directly connected to the evolution of earth. • Evidence: – Fossils –Geology – Biogeography • Similarities in rock types • Glaciation • Fossil distributions Plate tectonics Plate tectonics Alfred Wegener (1880-1930) His theory was based on several 1915 – he suggested that 300 observations: mya all of the continents 1. The fit of the continents. formed a supercontinent that 2. Similarity of rock types across he called “Pangea”. Atlantic. 3. Glacial “tracks”. 4. Fossil distributions. Plate Tectonics Plate Tectonics Continental Margins 1 Plate Tectonics Plate Continental Margins Tectonics Near perfect fit when continents are joined by continental margins. South America Africa Plate Tectonics Plate Tectonics Glacial striations reveal ancient continental connections. Matching rock assemblages across the Atlantic Ocean. Plate Tectonics Plate Tectonics Glacial striations reveal ancient continental connections. Glacial Striations 2 Plate Tectonics Plate Tectonics Glacial Striations Glacial Striations Plate Tectonics Plate tectonics New evidence supporting Overlapping Fossil Wegener: assemblages 1. Sea floor spreading 2. Magnetic sea floor patterns 3. Sea floor age patterns Plate Tectonics Plate Tectonics Evidence of sea floor spreading The planet experience periodic reversals in the poles. Rock reflect direction of magnetism when they are created. Sea floor reveals a mirror image of rock magnetism. 3 Plate Tectonics Plate Tectonics Evidence of sea floor spreading Sea floor spreading The planet experience Age of seafloor N . A periodic reversals in the increases at m Europe a e n ri poles. equal rates i ca h India relative to C Rock reflect direction of oceanic rifts. Africa magnetism when they The oldest sea are created.
    [Show full text]