Monitoring Changes in Genetic Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Monitoring As a Promising Tool for Conservation and Management
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 9-2006 Genetic monitoring as a promising tool for conservation and management Michael K. Schwartz USDA Forest Service, [email protected] Gordon Luikart University of Montana, [email protected] Robin Waples NOAA, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Schwartz, Michael K.; Luikart, Gordon; and Waples, Robin, "Genetic monitoring as a promising tool for conservation and management" (2006). Publications, Agencies and Staff of the U.S. Department of Commerce. 482. https://digitalcommons.unl.edu/usdeptcommercepub/482 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Review TRENDS in Ecology and Evolution Vol.22 No.1 Genetic monitoring as a promising tool for conservation and management Michael K. Schwartz1, Gordon Luikart2,3 and Robin S. Waples4 1 USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59801, USA 2 Center for Investigation of Biodiversity and Genetic Resources, University of Porto, Campus Agra`rio de Vaira˜ o 4485-661, Portugal 3 Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA 4 National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA In response to ever-increasing anthropogenic changes to markets [8]. -
Chapter 4: Assessing the Threat of Genetic Erosion
Chapter 4: Assessing the threat of genetic erosion P. Mathur Bioversity International Sub-Regional Office for South Asia ew Delhi, India E-mail: [email protected] Abstract The world community has confirmed its commitment to the conservation of plant genetic resources that provide valuable traits for meeting the challenges of the future, such as adapting crops to changing climatic conditions or disease outbreaks. However, this plant diversity is threatened by “genetic erosion”, a term coined by scientists for the loss of individual genes or combinations of genes, such as those found in locally adapted landraces. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization and land clearing through deforestation and bush fires. Genetic erosion can also occur on the level of germplasm collections and genebanks due to improper management and inadequate regeneration procedures. There is a need to strengthen the conservation and sustainable use of plants and seed systems, and the crucial linkages between them, through a combination of appropriate policies, use of scientific information, farmers’ knowledge, and action. Traditionally, efforts to counter genetic erosion have concentrated on conserving seeds in crop genebanks ( ex situ ). Today, it has become clear that the best strategy combines ex situ conservation with on-the-ground ( in situ ) conservation by farmers in their agro-ecosystems and of crop wild relatives in, for example, areas protected for their environmental value. While such mechanisms are vital, the sustainable use of plant genetic resources is likewise essential because plant genetic diversity increases options and provides insurance against future adverse conditions, such as extreme and variable environments. -
Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology. -
Crop Genetic Resources Bulletin Number 2 an Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold
A Report from the Economic Research Service United States Department www.ers.usda.gov of Agriculture Economic Information Crop Genetic Resources Bulletin Number 2 An Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold Abstract: Crop genetic resources are the basis of agricultural production, and significant economic benefits have resulted from their conservation and use. However, crop genetic resources are largely public goods, so private incentives for genetic resource conservation may fall short of achieving public objectives. Within the U.S. germplasm system, certain crop collec- tions lack sufficient diversity to reduce vulnerability to pests and diseases. Many such genetic resources lie outside the United States. This report examines the role of genetic resources, genetic diversity, and efforts to value genetic resources. The report also evaluates economic and institutional fac- tors influencing the flow of genetic resources, including international agree- ments, and their significance for agricultural research and development in the United States. Keywords: Genetic resources, genetic diversity, germplasm, R&D, interna- tional transfer of genetic resources, in situ conservation, ex situ conserva- tion, gene banks, intellectual property. Acknowledgments: The authors wish to thank Allan Stoner, Henry Shands, and Peter Bretting for their thoughtful reviews and their valuable comments. Thanks for reviews above and beyond the call of duty belong to June Blalock, whose patience and insight were critical to the production of this report. We also thank Joe Cooper who reviewed portions of the manuscripts. Keith Wiebe provided helpful guidance in the development of the final draft. We thank Dale Simms for his excellent editorial work and Susan DeGeorge for her help with graphics and layout. -
Microevolution and the Genetics of Populations Microevolution Refers to Varieties Within a Given Type
Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift. -
Genetic Diversity, Population Structure, and Effective Population Size in Two Yellow Bat Species in South Texas
Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas Austin S. Chipps1, Amanda M. Hale1, Sara P. Weaver2,3 and Dean A. Williams1 1 Department of Biology, Texas Christian University, Fort Worth, TX, United States of America 2 Biology Department, Texas State University, San Marcos, TX, United States of America 3 Bowman Consulting Group, San Marcos, TX, United States of America ABSTRACT There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. -
Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes. -
Contemporary Agriculture Vol
Contemporary Agriculture Vol. 67, No. 1, Pp. 1 - 8, 2018. The Serbian Journal of Agricultural Sciences ISSN (Online) 2466-4774 UDC: 63(497.1)(051)-“540.2” www.contagri.info Review paper UDC: 582.542.11 DOI: 10.2478/contagri-2018-0001 AGROBIODIVERSITY GENETIC VARIABILITY UTILIZATION IN ORGANIC FOOD PRODUCTION* Miodrag DIMITRIJEVIĆ1♦, Sofija PETROVIĆ, Borislav BANJAC, Goran BARAĆ, Velimir MLADENOV1 Summary The food production at the global level is about to meet its border. Industrialization of agriculture correlates with an explosive enlargement of human population, during XX and at the beginning of XXI centuries. An ongoing process of environmental erosion has been speeding up during that period, not only in our physical surrounding, but also in biodiversity. A new direction in agricultural food production is in demand. Organic food production has been recognized as the way of providing safety and quality food, preserving the environment in the same time. In the other hand new land areas have to be explored for agricultural use, in order to enhance food quantity to meeting the increasing demand for food. These targets set new requirements in plant breeding. To fulfill these requirements the genetic variability harbored in genetic resources has to be preserved, examined and put to good use. Key words: biodiversity, organic, agriculture, genetics, breeding, agriculture INTRODUCTION The human population is growing in a burst. The World entered 20th Century with about 1.5 billion inhabitants, and left it enriched by more than 6 billion. In just 100 years the increment was three time bigger than in all previous human history. At the moment there is more than 7 billion of us, as UN reported, summarized by Roser and Ortiz- Ospina (2017). -
Diversity on the Farm How Traditional Crops Around the World Help to Feed Us All, and Why We Should Reward the People Who Grow Them
Diversity on the Farm How traditional crops around the world help to feed us all, and why we should reward the people who grow them. FORD FOUNDATION By Charles C. Mann POLITICAL ECONOMY RESEARCH INSTITUTE UNIVERSITY OF MASSACHUSETTS Maize Front cover, left: Hector Diaz Castellano, a Zapotec small-holder, on his farm in the hills of southern Mexico; right: an array of native maize varieties. Above and right: Post-harvest survey of native maize varieties at INIFAP, an agricultural-research institute outside the city of Oaxaca; inside left: making the maize drink atole in a country market; inside right: rinsing off the lime used to process maize kernels for hand-made tortillas in Ítanoni, an unusual gourmet tortillería in Oaxaca city that may serve as one model for saving agricultural biodiversity. By Charles C. Mann Photographs by Peter Menzel Diversity on the Farm Subhead if any goes here for the development of wild corn and Maize heirloom varieties At Ítanoni, hand-made tortillas 2 Mission Statements 17 From the Stomach 23 The Best Tortillas from single varieties of native maize to the Heart in Mexico are cooked on traditional circular 3 Foreword clay griddles called comales. 25 Notes 5 Introduction 19 What We Can Do: Five Approaches 28 Credits 7 Building the Roof with 1. LABELING Stones from the Foundation 2. CROP IMPROVEMENT 3. REMOVING PERVERSE INCENTIVES 11 Conserving Agricultural Biodiversity 4. PAYING FOR CURRENTLY Copyright 2004 UNCOMPENSATED SERVICES by the Ford Foundation all rights reserved. 13 A Community Effort 5. INCREASING SOCIAL CAPITAL Mission Statements FORD FOUNDATION The Ford Foundation is a resource for innovative people and institutions worldwide. -
Species Change Over Time
KEY CONCEPT Species change over time. BEFORE, you learned NOW, you will learn • Fossils are evidence of earlier • About early ideas and observa- life tions on evolution • More complex organisms have • How Darwin developed his developed over time theory of natural selection • Mass extinctions contributed to • How new species arise from the development of Earth’s older species history VOCABULARY THINK ABOUT evolution p. 797 How have telephones changed over time? natural selection p. 801 adaptation p. 802 Today people across the world can speciation p. 804 communicate in many different ways. One of the most common ways is over the telephone. Looking at the two pictures, can you describe how this form of communication has changed over time? Scientists explore the concept of evolution. MAIN IDEA AND DETAILS In a general sense, evolution involves a change over time. You could Make a chart for the main say that the way humans communicate has evolved. Certainly idea scientists explore the concept of evolution. telephones have changed over time. The first telephones were the size Include details about scien- of a shoebox. Today a telephone can fit in the palm of your hand and tists’ observations. can send images as well as sound. In biology,evolution refers to the process though which species change over time. The change results from a change in the genetic material of an organism and is passed from one generation to the next. Check Your Reading What is evolution? Chapter 23: History of Life 797 Early Ideas reading tip In the early 1800s, a French scientist named Jean Baptiste de Lamarck The word acquire comes was the first scientist to propose a model of how life evolves. -
Genetic Erosion of Agrobiodiversity in India and Intellectual Property Rights: Interplay and Some Key Issues
Genetic Erosion of Agrobiodiversity in India and Intellectual Property Rights: Interplay and some Key Issues Sabuj Kumar Chaudhuri [SRF (UGC) NET], Department of Library and Information Science, Jadavpur University, Kolkata-32 [West Bengal], India. email: [email protected] Abstract Agrobiodiversity is the backbone of a nation’s food security and the basis of economic development as a whole. Over the years this diversity in India is under pressure due to the massive commercialisation of agriculture leading to the almost extinction of traditional farming systems. The top-down system of agricultural research, where farmers are seen merely as recipients of research rather than as participants in it, has contributed to an increased dependence on a relatively few plant varieties. This trend and the increasing industrialization of agriculture are key factors in what can only be called "genetic erosion". The term refers to both the loss of species and the reduction of variety. Behind this commercialization there lies the interest of the breeders for obtaining intellectual property rights. It has a very complicated relationship with this diversity. The paper highlights this relationship and provides some suggestions in order to rectify the current negative phenomenon. India’s agrobiodiversity is most significant one in the world. This diversity is the result of thousand of years of farmer’s selection, experimentation (even cross breeding) and propagation of desirable traits of desirable species in innumerable ways for their subsistence and cultural purposes. Over the years this unparallel diversity of various crops of India has been eroded. Replacement of landraces (a crop cultivar that evolved with and has been genetically improved by traditional agriculturists, but has not been influenced by modern breeding practices) or TVs (traditional varieties) by MVs (modern varieties) or HYVs (High Yielding Varieties) is one of the most important reasons. -
Training for Sustainable Food Systems Development Manual Training for Sustainable Food Systems Development Manual Table of Contents
Training for sustainable food systems development Manual Training for sustainable food systems development Manual Table of contents General introduction 1 Training Unit 1: Healthy and sustainable diets 4 Unit 2: Biodiversity, seasonality and organic food 19 Unit 3: Water and land management food footprints 29 Unit 4: Food loss and food waste 40 Unit 5: Circular economy and resilience 48 Unit 6: Local economy and alternative systems 60 Unit 7: Ethic and inclusive food business models 71 Unit 8: Food and cultural heritage 82 Conclusion 90 Bibliography 91 Indice Introduction 1 Formazione Modulo 1: Diete sane e sostenibili 4 Modulo 2: Biodiversità, stagionalià ed alimenti biologici 19 Modulo 3: Impronte alimentari nella gestione dell’acqua e della terra 29 Modulo 4: Perdita e spreco di cibo 40 Modulo 5: Economia circolare e resilienza 48 Modulo 6: Economia locale e sistemi alternativi 60 Modulo 7: Modelli di business alimentari etici ed inclusivi 71 Modulo 8: Cibo e patrimonio culturale 82 Conclusioni 90 Bibliografia 91 Índice Introducción 1 Formación Unidad 1: Dietas sanas y sostenibles 4 Unidad 2: Biodiversidad, estacionalidad y comida orgánica 19 Unidad 3: Huellas alimentarias de la gestión del agua y de la tierra 29 Unidad 4: Pérdida y desperdicio de alimentos 40 Unidad 5: Economía circular y resiliencia 48 Unidad 6: Economía local y sistemas alternativos 60 Unidad 7: Modelos de negocio alimentarios éticos e inclusivos 71 Unidad 8: Comida y herencia cultural 82 Conclusión 90 Bibliografía 91 General introduction Food production, trade and consumption are the core of the relationship between humans and nature. Food is a key element of human's identity and cultural values.