Challenges in Conserving and Utilizing Plant Genetic Resources (PGR)

Total Page:16

File Type:pdf, Size:1020Kb

Challenges in Conserving and Utilizing Plant Genetic Resources (PGR) Vol. 6(2), pp. 16-22, March 2014 DOI: 10.5897/IJGMB2013.0083 Article Number: DE9B5EB47127 International Journal of Genetics and Molecular ISSN 2006-9863 Copyright © 2014 Biology Author(s) retain the copyright of this article http://www.academicjournals.org/IJGMB Review Challenges in conserving and utilizing plant genetic resources (PGR) Ogwu, M. C.*, Osawaru, M. E. and Ahana, C. M. Plant Conservation Unit, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Edo State, Nigeria. Received 2 October, 2013; Accepted 22 January, 2014 The problems of food and income security are of global significance and are further compounded by precedential increase in world population resulting in overexploitation of natural resources and by extension plant genetic diversity. Plant genetic resources (PGR) refer to the heritable materials contained within and among plant species of present and potential value. In the recent past, genetic diversity found in landrace, weedy and wild cultivars have been reported to savage animal and plant population diseases, pest and environmental changes. Nevertheless, these resources are lost at alarming rates due to anthropogenic product and by products such as climate change, pollution, genetic erosion, gross mismanagement of these resources and population growth. Hence, the need for conservation and sustainable utilization of these resources. PGR conservation is the management of varietal diversity in plant occasioned by interaction between genes and the environment for actual or potential and present or future use. A complimentary application of in situ and ex situ conservation technique is recommended for their effective conservation. Efficient survey, collection and documentation is also pertinent. International, national and individual appreciation of the value of this vast genetic diversity would facilitate their sustainable utilization. PGR utilization refers to the use value of these genetic resources. There is need to create avenues through which these can be easily accessed and enact effective policies for their protection especially in their hotspot and regions of high endemism. Key words: Plant genetic resources (PGR), conservation, utilization, environmental changes, population growth, genetic erosion. INTRODUCTION Plant genetic resources (PGR) is the pillar upon which mical, pathological and ecological research and breeding; world food security and agriculture depends especially encompassing all cultivated crops and those of little to no with expanding global population. PGR refers to the agricultural value as well as their weedy and wild heritable materials contained within and among plant relatives (Ulukan, 2011). Hammer and Teklu (2008) species of present and potential, economic, scientific or opined that the genetic adaptation and the rate of societal value. They include materials considered of evolutionary response of a species to selective forces systematic importance and applicable in cytogenetic, (changing environments, new pests and diseases and phylogenetic, evolutionary biology, physiological, bioche- new climatic conditions) depend on inherent levels of *Corresponding author. E-mail: [email protected]. Tel: +234-8060428048. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Ogwu et al. 17 genetic diversity present at the time. The importance of trial agriculture and increasing globalization of markets, PGR is reflected in every facet of human endeavor as it tastes and cultures, much of this wealth is being lost both provides the gene pool from which resistant and on-farm and in genebanks, as increasingly the integrity of improved varieties can be engineered. The economic these resources is being compromised by genetically value of increasing crop productivity through the diffusion modified organisms. of improved, modern varieties has been extensively This is further compounded by issues arising from documented, particularly in the context of industrialized patent rights. The world faces major challenges of agriculture by Alston et al. (2000) and Evenson and population growth, climate change, increasing social and Gollin (2003). Costs and benefits for plant genetic economic instability and a continuing failure to achieve resources conserved in gene banks, destined principally food and income security. for use by commercial farmers have also been estimated by Koo et al. (2004) and Smale and Koo (2003). Thus, PGR can play roles in ensuring income security Population growth and Urbanization especially for developing and under developed countries where majority of livelihood is hinged upon these natural As human population break new grounds machinery are resources. set up that modifies the natural environment to his thirst In the past, plant genetic diversity loss was largely resulting in a strangling pressure on land and other caused by natural processes, mainly as a result of natural resources for food, industries, shelter and climate changes and is still occurring although at a very agriculture; ultimately leading to habitat destruction and minimal rate. By contrast, the recent acceleration in the loss of plant genetic resources. For example, Malik and loss of plant diversity is mainly due to the activities of the Singh (2006) estimated that the food grain demands by earth’s dominant species. Land clearing, overgrazing, the the year of 2020 is anticipated to be around 250 million cutting and burning of forests, the indiscriminate use of tonnes, which means an extra 72 million tonnes of food fertilizers and pesticides, war and civil strife have all grains are required. This could lead to over exploitation of impacted negatively to destroyed natural habitats and the PGR as witnessed during the Green Revolution. Social diversity contained therein. Sodhi and Erhlich (2010) disruptions or wars and poverty also pose a constant supported this by stating that earth dominant species threat to genetic wipeout as it is associated with heavy have destroyed, degraded and polluted earth’s natural reliance directly on natural resource which often leads to habitat which are key in life support. More so, serious overexploitation and destruction of wild PGR. illnesses, water contamination and ecological destruction can be attributed to the drilling of oil which has caused widespread destruction of rainforest and endangered the Pollution lives of tens of thousands of people (Hvalkoff, 2001). The diversity of genes within species increases its ability to Soil and atmospheric biodiversity including microbial adapt to adverse environmental conditions. When these diversity and the diversity of pollinators and predators are varieties or populations of these species are destroyed, also under threat of pollution. Threats to these resources the genetic diversity within the species is diminished. In include pollution by genetically modified material and the many cases, habitat destruction has narrowed the increasing use of intellectual property rights (IPRs) to genetic variability of species lowering the ability to adapt claim sole ownership over varieties, breeds and genes, to changed environmental conditions. The greater the which restricts access for farmers and other food variability of the species, the more is the ecosystem producers. This loss of diversity is accelerating and stability. sliding down the slippery slope of food insecurity that This report is aimed at creating awareness on the today sends more than 1.2 billion people to bed, hungry. threats to PGR and the need for their effective conservation and sustainable utilization. Habitat loss and modification THREATS TO PGR CONSERVATION AND Exploration and extraction of natural resources affect and UTILIZATION alter the geophysical environment of the areas where they are carried on. An example is the environmental The impact of humans upon biological diversity impact of oil exploitation in the Niger Delta region of (biodiversity) has gradually increased with growing Nigeria which contribute in no small measure to the industrialization, technology, population, production and destruction of the fragile ecosystem, thus making the consumption rates. Food sovereignty, accessibility and region ‘one of the world’s most severely petroleum security, landscapes and environmental integrity along impacted ecosystems and one of the five most with gross mismanagement are contending issues which petroleum-polluted environments in the world’ (Niger impact on PGR. Since the era of green revolution, Indus- Delta Natural Resource Damage Assessment and 18 Int. J. Genet. Mol. Biol. Restoration Project, 2006). With the exploration of oil; in environmental services, such as flood control and spillage, deforestation, noise pollution and other water supply, water assimilation, nutrient recycling, ecological effects, they are not willing to yield to their conservation and regeneration of soils. Although not all demands for adequate attention to their polluted and alien species will become invasive or threaten the depreciating environment (Olubisi and Oluduro, 2012). environment there is need for a clear policy approach because of its potentially wide-ranging impacts when they do become invasive, and because of the difficulties, Climate change including financial costs, in reversing its impacts. Virtually all countries in the world are affected at different degrees Climate change is having a significant negative impact on
Recommended publications
  • Chapter 4: Assessing the Threat of Genetic Erosion
    Chapter 4: Assessing the threat of genetic erosion P. Mathur Bioversity International Sub-Regional Office for South Asia ew Delhi, India E-mail: [email protected] Abstract The world community has confirmed its commitment to the conservation of plant genetic resources that provide valuable traits for meeting the challenges of the future, such as adapting crops to changing climatic conditions or disease outbreaks. However, this plant diversity is threatened by “genetic erosion”, a term coined by scientists for the loss of individual genes or combinations of genes, such as those found in locally adapted landraces. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization and land clearing through deforestation and bush fires. Genetic erosion can also occur on the level of germplasm collections and genebanks due to improper management and inadequate regeneration procedures. There is a need to strengthen the conservation and sustainable use of plants and seed systems, and the crucial linkages between them, through a combination of appropriate policies, use of scientific information, farmers’ knowledge, and action. Traditionally, efforts to counter genetic erosion have concentrated on conserving seeds in crop genebanks ( ex situ ). Today, it has become clear that the best strategy combines ex situ conservation with on-the-ground ( in situ ) conservation by farmers in their agro-ecosystems and of crop wild relatives in, for example, areas protected for their environmental value. While such mechanisms are vital, the sustainable use of plant genetic resources is likewise essential because plant genetic diversity increases options and provides insurance against future adverse conditions, such as extreme and variable environments.
    [Show full text]
  • Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
    Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology.
    [Show full text]
  • Crop Genetic Resources Bulletin Number 2 an Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold
    A Report from the Economic Research Service United States Department www.ers.usda.gov of Agriculture Economic Information Crop Genetic Resources Bulletin Number 2 An Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold Abstract: Crop genetic resources are the basis of agricultural production, and significant economic benefits have resulted from their conservation and use. However, crop genetic resources are largely public goods, so private incentives for genetic resource conservation may fall short of achieving public objectives. Within the U.S. germplasm system, certain crop collec- tions lack sufficient diversity to reduce vulnerability to pests and diseases. Many such genetic resources lie outside the United States. This report examines the role of genetic resources, genetic diversity, and efforts to value genetic resources. The report also evaluates economic and institutional fac- tors influencing the flow of genetic resources, including international agree- ments, and their significance for agricultural research and development in the United States. Keywords: Genetic resources, genetic diversity, germplasm, R&D, interna- tional transfer of genetic resources, in situ conservation, ex situ conserva- tion, gene banks, intellectual property. Acknowledgments: The authors wish to thank Allan Stoner, Henry Shands, and Peter Bretting for their thoughtful reviews and their valuable comments. Thanks for reviews above and beyond the call of duty belong to June Blalock, whose patience and insight were critical to the production of this report. We also thank Joe Cooper who reviewed portions of the manuscripts. Keith Wiebe provided helpful guidance in the development of the final draft. We thank Dale Simms for his excellent editorial work and Susan DeGeorge for her help with graphics and layout.
    [Show full text]
  • Plant Genetics and Biotechnology in Biodiversity
    diversity Plant Genetics and Biotechnology in Biodiversity Edited by Rosa Rao and Giandomenico Corrado Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Plant Genetics and Biotechnology in Biodiversity Plant Genetics and Biotechnology in Biodiversity Special Issue Editors Rosa Rao Giandomenico Corrado MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rosa Rao Giandomenico Corrado Universita` degli Studi di Napoli Universita` degli Studi di Napoli “Federico II” “Federico II” Italy Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) from 2017 to 2018 (available at: http://www.mdpi.com/journal/diversity/special issues/plant genetics biotechnology) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03842-003-3 (Pbk) ISBN 978-3-03842-004-0 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Plant Genetic Resources As Commons: the Model of Fao’S International Treaty
    PLANT GENETIC RESOURCES AS COMMONS: THE MODEL OF FAO’S INTERNATIONAL TREATY Dr. María Iglesias Introduction After almost 7 years of negotiations, the International Treaty on Plant Genetic Resources for Food and Agriculture (hereinafter ITPGRFA) was adopted in November 20011. The Treaty already recognises in its Preamble that plant genetic resources for food and agriculture are a common concern of all countries, in that all countries depend very largely on plant genetic resources for food and agriculture that originated elsewhere. Thus, the main objectives of the ITPGRFA are the conservation and sustainable use of plant genetic resources for food and agriculture (hereinafter PGRFAs) and the fair and equitable sharing of the benefits arising out of their use, in harmony with the Convention on Biological Diversity, for sustainable agriculture and food security2. Although the Treaty covers all PGRs3, it establishes an international commons pool, the so called multilateral system, only for certain kinds of resources that will guarantee the access to these resources and the sharing of benefits 1 The ITPGRFA entered in to force in June 2004. In December 2008, 119 states had ratified it. 2 Art. 1. The ITPGRFA may be considered in fact as a special application of art. 15 (Access to Genetic Resources) of the Convention on Biological Diversity: “1. Recognizing the sovereign rights of States over their natural resources, the authority to determine access to genetic resources rests with the national governments and is subject to national legislation. 2. Each Contracting Party shall endeavour to create conditions to facilitate access to genetic resources for environmentally sound uses by other Contracting Parties and not to impose restrictions that run counter to the objectives of this Convention.
    [Show full text]
  • Plant Genetic Resources Conservation: Integrated Strategies
    PGR conservation: Integrated strategies. Ganeshan Plant Genetic Resources conservation: Integrated strategies S. Ganeshan Tropical Botanic Garden & Research Institute, Thiruvananthapuram, India. Plant Genetic Resources (PGRs) comprise a heterogeneous group of plant species involving herbs, shrubs, lianas and trees. About 90% of the world’s food comes from just 20 plant species. There is a need to increase the number of species to be brought under cultivation. Plant breeders find the need to use wild species and to introduce them into cultivated forms for the desired qualities of resistance to pests and diseases and the ability to withstand adverse soil and weather conditions. India's biological diversity is very rich but unfortunately its wealth is being eroded due to lack of integrated conservation approaches. This diversity needs to be conserved and the immediate task will be to devise and enforce time bound action plans for saving the plant species as well as their habitats. Action has to be directed towards all levels of conservation, in situ and ex situ. The conservation strategies need to be integrated and based on species specific decision support systems, which could be based on research and development outputs. Appropriate links are desirable between in situ and ex situ conservation approaches keeping the in situ reservoirs as base biological capital, sourcing PGRs in a sustainable manner for creation of core ex situ reservoirs representing the entire genetic diversity of the desired species or a combination of them. Need based technological interventions for ex situ conservation such as creation of a back up in vitro active gene bank for an FGB, strengthened by cryobanking of species specific meristem, seed, pollen and DNA as complementary conservation approaches to capture the entire range of genetic diversity will have to be explored.
    [Show full text]
  • The "Tragedy of the Commons" in Plant Genetic Resources: the Need for a New International Regime Centered Around an International Biotechnology Patent Office
    Gulati: The "Tragedy of the Commons" in Plant Genetic Resources: The Need for a New International Regime Centered Around an International Biotechnology Patent Office Note The "Tragedy of the Commons" in Plant Genetic Resources: The Need for a New International Regime Centered Around an International Biotechnology Patent Office Chetan Gulati- The last several centuries have seen a transformation in the ways in which wealth is generated. As society has transformed itself in the post- industrial era, "knowledge" and "information," as opposed to land and physical property, have increasingly become the primary sources of wealth generation.1 For example, historically, it was ownership of the forest that was the principal channel for the derivation of riches. Today it is the possession of the patent in the pharmaceutical product derived from the leaves of the trees of the very same forest that is the fountain from which the greatest wealth springs. It is not surprising, therefore, that the strategy of wealth maximization has shifted from the desire to accumulate physical property to one in which the domination2 of intellectual property rights ("IPRs") has become preeminent. As already alluded to, the products derived from plant genetic resources ("PGRs")3 are major sources of wealth generation for developed t J.D., Yale Law School, expected 2002. I am grateful to Professor Gideon Parchomovsky for his guidance and valuable commentary. I should also thank my colleagues at the Yale Law School, especially Saema Somalya, Jean Tom and the other editors of the Yale Human Rights and Development Law Journal, without whose constant challenge to my ideas, this project would never have come to fruition.
    [Show full text]
  • Biodiversity Conservation: How Can the Regulation of Bioprospecting
    N°06/13 JUNE 2013 | BIODIVERSITY Biodiversity conservation: How can the regulation of bioprospecting under the Nagoya Protocol make a difference? Claudio Chiarolla, Renaud Lapeyre, Romain Pirard (IDDRI) THE REGULATION OF BIOPROSPECTING: WHAT IS IT? AND WHY IS IT IMPORTANT? The need to protect biodiversity and to promote fairness in the use of genetic resources and associated traditional knowledge has engendered one of the most contentious debates of the 21st century between devel- oped and developing countries. This debate has fundamental implications for the way in which basic and applied research on genetic resources and biodiversity is conducted and its results are made available between and within peoples and societies. Therefore, the regulation of bioprospecting –i.e. “the search for plant and animal species from which medicinal drugs and other commercially valuable compounds can be obtained”– not only tells stories about biodiversity conservation, but also about food security, global health, intellectual property, indigenous peoples, equity, justice and human rights. NEW PERSPECTIVES: BIOPROSPECTING CONTRACTS AS MARKET- BASED INSTRUMENTS In a context of financial constraint, MBIs are seen as a potential tool to help foster biodiversity conservation. As private contracts between two (or more) parties (theoretically Coasean agreements), bioprospecting contracts could be more efficient than command-and-control regulations aimed at biodiversity conservation. Aiming to regulate bioprospecting, the Nagoya Protocol on Access to Genetic Resources and Benefit Shar- ing (ABS), adopted in 2010, should help to stop the misappropriation This article is based on research that has of genetic resources and associated traditional knowledge (known as received a financial support from the French ‘biopiracy’), while providing legal certainty for public and private users government in the framework of the programme of such resources.
    [Show full text]
  • Contemporary Agriculture Vol
    Contemporary Agriculture Vol. 67, No. 1, Pp. 1 - 8, 2018. The Serbian Journal of Agricultural Sciences ISSN (Online) 2466-4774 UDC: 63(497.1)(051)-“540.2” www.contagri.info Review paper UDC: 582.542.11 DOI: 10.2478/contagri-2018-0001 AGROBIODIVERSITY GENETIC VARIABILITY UTILIZATION IN ORGANIC FOOD PRODUCTION* Miodrag DIMITRIJEVIĆ1♦, Sofija PETROVIĆ, Borislav BANJAC, Goran BARAĆ, Velimir MLADENOV1 Summary The food production at the global level is about to meet its border. Industrialization of agriculture correlates with an explosive enlargement of human population, during XX and at the beginning of XXI centuries. An ongoing process of environmental erosion has been speeding up during that period, not only in our physical surrounding, but also in biodiversity. A new direction in agricultural food production is in demand. Organic food production has been recognized as the way of providing safety and quality food, preserving the environment in the same time. In the other hand new land areas have to be explored for agricultural use, in order to enhance food quantity to meeting the increasing demand for food. These targets set new requirements in plant breeding. To fulfill these requirements the genetic variability harbored in genetic resources has to be preserved, examined and put to good use. Key words: biodiversity, organic, agriculture, genetics, breeding, agriculture INTRODUCTION The human population is growing in a burst. The World entered 20th Century with about 1.5 billion inhabitants, and left it enriched by more than 6 billion. In just 100 years the increment was three time bigger than in all previous human history. At the moment there is more than 7 billion of us, as UN reported, summarized by Roser and Ortiz- Ospina (2017).
    [Show full text]
  • Economics of Plant Genetic Resource Management for Adaptation to Climate Change a Review of Selected Literature
    Economics of plant genetic resource management for adaptation to climate change A review of selected literature Solomon Asfaw and Leslie Lipper ESA Working paper No. 12-02 April 2012 Agricultural Development Economics Division Food and Agriculture Organization of the United Nations www.fao.org/economic/esa Economics of plant genetic resource management for adaptation to climate change A review of selected literature Solomon Asfaw and Leslie Lipper Abstract Climate change is projected to change production conditions for agricultural producers globally. In the developing world, most of the projected changes will result in a reduction of agricultural productivity, with concomitant reductions in food security. Because agricultural production remains the main source of income for most rural communities, adaptation of the agricultural sector to the adverse effects of climate change will be imperative to protect and improve the livelihoods of the poor and to ensure food security. Adaptation will require farmers to make adjustments and employ a range of actions to enhance the resilience of local food systems that increase their net revenue by reducing the potential damage from climate change. Their capacity to make the required adjustments depends on the existence of policies and investments to support farmers’ access to materials and information, as well as to provide the proper economic incentives to stimulate changes. Responding to a changing climate will also require changes in PGRFA management to address both immediate and slow onset changes. There are a range of adaptation options involving changes in PGRFA management, including changing crops, varieties and farming practices. These options are not mutually exclusive, and in fact are most often used on combinations (e.g.
    [Show full text]
  • Diversity on the Farm How Traditional Crops Around the World Help to Feed Us All, and Why We Should Reward the People Who Grow Them
    Diversity on the Farm How traditional crops around the world help to feed us all, and why we should reward the people who grow them. FORD FOUNDATION By Charles C. Mann POLITICAL ECONOMY RESEARCH INSTITUTE UNIVERSITY OF MASSACHUSETTS Maize Front cover, left: Hector Diaz Castellano, a Zapotec small-holder, on his farm in the hills of southern Mexico; right: an array of native maize varieties. Above and right: Post-harvest survey of native maize varieties at INIFAP, an agricultural-research institute outside the city of Oaxaca; inside left: making the maize drink atole in a country market; inside right: rinsing off the lime used to process maize kernels for hand-made tortillas in Ítanoni, an unusual gourmet tortillería in Oaxaca city that may serve as one model for saving agricultural biodiversity. By Charles C. Mann Photographs by Peter Menzel Diversity on the Farm Subhead if any goes here for the development of wild corn and Maize heirloom varieties At Ítanoni, hand-made tortillas 2 Mission Statements 17 From the Stomach 23 The Best Tortillas from single varieties of native maize to the Heart in Mexico are cooked on traditional circular 3 Foreword clay griddles called comales. 25 Notes 5 Introduction 19 What We Can Do: Five Approaches 28 Credits 7 Building the Roof with 1. LABELING Stones from the Foundation 2. CROP IMPROVEMENT 3. REMOVING PERVERSE INCENTIVES 11 Conserving Agricultural Biodiversity 4. PAYING FOR CURRENTLY Copyright 2004 UNCOMPENSATED SERVICES by the Ford Foundation all rights reserved. 13 A Community Effort 5. INCREASING SOCIAL CAPITAL Mission Statements FORD FOUNDATION The Ford Foundation is a resource for innovative people and institutions worldwide.
    [Show full text]
  • Collection and Conservation of Plant Genetic Resources for Food and Agriculture in 2014–2020”
    Programme „Collection and Conservation of Plant Genetic Resources for Food and Agriculture in 2014–2020” Introduction The Programme „Collection and Conservation of Plant Genetic Resources for Food and Agriculture in 2014–2020“ (hereinafter the Programme) provides the objectives and the most important activities of the collection and conservation of plant genetic resources for food and agriculture. In Estonia, the Ministry of Agriculture and the Ministry of the Environment are responsible for the collection and conservation of plant genetic resources for food and agriculture. Need to draw up the Programme Drawing up the Programme was caused by the fulfilment of the commitments of the Republic of Estonia proceeding from international agreements, such as the Convention on Biological Diversity, the Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture and the International Treaty on Plant Genetic Resources for Food and Agriculture (see Annex 1). The Programme also serves as the basis for the promotion of the National Programme for Plant Breeding 2009–2019 approved by Order No 152 of the Minister of Agriculture, 3 July, 2008, and related to the assurance of the sustainable development of Estonian plant breeding and the conservation breeding of existing varieties, healthy and safe food, the sustainable use of natural and environmental resources, the maintenance of genetic and landscape diversity and the reduction of climate change hazards. The need to draw up the Programme 2014–2020 was caused by the finalisation of the Programme „Collection and Conservation of Plant Genetic Resources for Food and Agriculture in 2007–2013“ approved by Order No 67 of the Minister of Agriculture, 23 March 2007.
    [Show full text]