Automated Techniques for Hash Function and Block Cipher Cryptanalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TS 102 176-1 V2.1.1 (2011-07) Technical Specification
ETSI TS 102 176-1 V2.1.1 (2011-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 1: Hash functions and asymmetric algorithms 2 ETSI TS 102 176-1 V2.1.1 (2011-07) Reference RTS/ESI-000080-1 Keywords e-commerce, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Statistical Weaknesses in 20 RC4-Like Algorithms and (Probably) the Simplest Algorithm Free from These Weaknesses - VMPC-R
Statistical weaknesses in 20 RC4-like algorithms and (probably) the simplest algorithm free from these weaknesses - VMPC-R Bartosz Zoltak www.vmpcfunction.com [email protected] Abstract. We find statistical weaknesses in 20 RC4-like algorithms including the original RC4, RC4A, PC-RC4 and others. This is achieved using a simple statistical test. We found only one algorithm which was able to pass the test - VMPC-R. This algorithm, being approximately three times more complex then RC4, is probably the simplest RC4-like cipher capable of producing pseudo-random output. Keywords: PRNG; CSPRNG; RC4; VMPC-R; stream cipher; distinguishing attack 1 Introduction RC4 is a popular and one of the simplest symmetric encryption algorithms. It is also probably one of the easiest to modify. There is a bunch of RC4 modifications out there. But is improving the old RC4 really as simple as it appears to be? To state the contrary we confront 20 candidates (including the original RC4) against a simple statistical test. In doing so we try to support four theses: 1. Modifying RC4 is easy to do but it is hard to do well. 2. Statistical weaknesses in almost all RC4-like algorithms can be easily found using a simple test discussed in this paper. 3. The only RC4-like algorithm which was able to pass the test was VMPC-R. It is approximately three times more complex than RC4. We believe that any algorithm simpler than VMPC-R would most likely fail the test. 4. Before introducing a new RC4-like algorithm it might be a good idea to run the statistical test described in this paper. -
Security Evaluation of the K2 Stream Cipher
Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 . -
The Hitchhiker's Guide to the SHA-3 Competition
History First Second Third The Hitchhiker’s Guide to the SHA-3 Competition Orr Dunkelman Computer Science Department 20 June, 2012 Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 1/ 33 History First Second Third Outline 1 History of Hash Functions A(n Extremely) Short History of Hash Functions The Sad News about the MD/SHA Family 2 The First Phase of the SHA-3 Competition Timeline The SHA-3 First Round Candidates 3 The Second Round The Second Round Candidates The Second Round Process 4 The Third Round The Finalists Current Performance Estimates The Outcome of SHA-3 Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 2/ 33 History First Second Third History Sad Outline 1 History of Hash Functions A(n Extremely) Short History of Hash Functions The Sad News about the MD/SHA Family 2 The First Phase of the SHA-3 Competition Timeline The SHA-3 First Round Candidates 3 The Second Round The Second Round Candidates The Second Round Process 4 The Third Round The Finalists Current Performance Estimates The Outcome of SHA-3 Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 3/ 33 History First Second Third History Sad A(n Extremely) Short History of Hash Functions 1976 Diffie and Hellman suggest to use hash functions to make digital signatures shorter. 1979 Salted passwords for UNIX (Morris and Thompson). 1983/4 Davies/Meyer introduce Davies-Meyer. 1986 Fiat and Shamir use random oracles. 1989 Merkle and Damg˚ard present the Merkle-Damg˚ard hash function. -
Cryptography Knowledge Area (Draft for Comment)
CRYPTOGRAPHY KNOWLEDGE AREA (DRAFT FOR COMMENT) AUTHOR: Nigel Smart – KU Leuven EDITOR: George Danezis – University College London REVIEWERS: Dan Bogdanov - Cybernetica Kenny Patterson – Royal Holloway, University of London Liqun Chen – University of Surrey Cryptography Nigel P. Smart April 2018 INTRODUCTION The purpose of this chapter is to explain the various aspects of cryptography which we feel should be known to an expert in cyber-security. The presentation is at a level needed for an instructor in a module in cryptography; so they can select the depth needed in each topic. Whilst not all experts in cyber-security need be aware of all the technical aspects mentioned below, we feel they should be aware of all the overall topics and have an intuitive grasp as to what they mean, and what services they can provide. Our focus is mainly on primitives, schemes and protocols which are widely used, or which are suitably well studied that they could be used (or are currently being used) in specific application domains. Cryptography by its very nature is one of the more mathematical aspects of cyber-security; thus this chapter contains a lot more mathematics than one has in some of the other chapters. The overall presentation assumes a basic knowledge of either first-year undergraduate mathematics, or that found in a discrete mathematics course of an undergraduate Computer Science degree. The chapter is structured as follows: After a quick recap on some basic mathematical notation (Sec- tion 1), we then give an introduction to how security is defined in modern cryptography. This section (Section 2) forms the basis of our discussions in the other sections. -
NISTIR 7620 Status Report on the First Round of the SHA-3
NISTIR 7620 Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm Competition Andrew Regenscheid Ray Perlner Shu-jen Chang John Kelsey Mridul Nandi Souradyuti Paul NISTIR 7620 Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm Competition Andrew Regenscheid Ray Perlner Shu-jen Chang John Kelsey Mridul Nandi Souradyuti Paul Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 September 2009 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Deputy Director NISTIR 7620: Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm Competition Abstract The National Institute of Standards and Technology is in the process of selecting a new cryptographic hash algorithm through a public competition. The new hash algorithm will be referred to as “SHA-3” and will complement the SHA-2 hash algorithms currently specified in FIPS 180-3, Secure Hash Standard. In October, 2008, 64 candidate algorithms were submitted to NIST for consideration. Among these, 51 met the minimum acceptance criteria and were accepted as First-Round Candidates on Dec. 10, 2008, marking the beginning of the First Round of the SHA-3 cryptographic hash algorithm competition. This report describes the evaluation criteria and selection process, based on public feedback and internal review of the first-round candidates, and summarizes the 14 candidate algorithms announced on July 24, 2009 for moving forward to the second round of the competition. The 14 Second-Round Candidates are BLAKE, BLUE MIDNIGHT WISH, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. -
Distinguishing Attacks on the Stream Cipher Py
Distinguishing Attacks on the Stream Cipher Py Souradyuti Paul‡, Bart Preneel‡, and Gautham Sekar‡† ‡Katholieke Universiteit Leuven, Dept. ESAT/COSIC, Kasteelpark Arenberg 10, B–3001, Leuven-Heverlee, Belgium †Birla Institute of Technology and Science, Pilani, India, Dept. of Electronics and Instrumentation, Dept. of Physics. {souradyuti.paul, bart.preneel}@esat.kuleuven.be, [email protected] Abstract. The stream cipher Py designed by Biham and Seberry is a submission to the ECRYPT stream cipher competition. The cipher is based on two large arrays (one is 256 bytes and the other is 1040 bytes) and it is designed for high speed software applications (Py is more than 2.5 times faster than the RC4 on Pentium III). The paper shows a statistical bias in the distribution of its output-words at the 1st and 3rd rounds. Exploiting this weakness, a distinguisher with advantage greater than 50% is constructed that requires 284.7 randomly chosen key/IV’s and the first 24 output bytes for each key. The running time and the 84.7 89.2 data required by the distinguisher are tini · 2 and 2 respectively (tini denotes the running time of the key/IV setup). We further show that the data requirement can be reduced by a factor of about 3 with a distinguisher that considers outputs of later rounds. In such case the 84.7 running time is reduced to tr ·2 (tr denotes the time for a single round of Py). The Py specification allows a 256-bit key and a keystream of 264 bytes per key/IV. As an ideally secure stream cipher with the above specifications should be able to resist the attacks described before, our results constitute an academic break of Py. -
Year 2010 Issues on Cryptographic Algorithms
Year 2010 Issues on Cryptographic Algorithms Masashi Une and Masayuki Kanda In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. -
New Developments in Cryptology Outline Outline Block Ciphers AES
New Developments in Cryptography March 2012 Bart Preneel Outline New developments in cryptology • 1. Cryptology: concepts and algorithms Prof. Bart Preneel • 2. Cryptology: protocols COSIC • 3. Public-Key Infrastructure principles Bart.Preneel(at)esatDOTkuleuven.be • 4. Networking protocols http://homes.esat.kuleuven.be/~preneel • 5. New developments in cryptology March 2012 • 6. Cryptography best practices © Bart Preneel. All rights reserved 1 2 Outline Block ciphers P1 P2 P3 • Block ciphers/stream ciphers • Hash functions/MAC algorithms block block block • Modes of operation and authenticated cipher cipher cipher encryption • How to encrypt/sign using RSA C1 C2 C3 • Multi-party computation • larger data units: 64…128 bits •memoryless • Concluding remarks • repeat simple operation (round) many times 3 3-DES: NIST Spec. Pub. 800-67 AES (2001) (May 2004) S S S S S S S S S S S S S S S S • Single DES abandoned round • two-key triple DES: until 2009 (80 bit security) • three-key triple DES: until 2030 (100 bit security) round MixColumnsS S S S MixColumnsS S S S MixColumnsS S S S MixColumnsS S S S hedule Highly vulnerable to a c round • Block length: 128 bits related key attack • Key length: 128-192-256 . Key S Key . bits round A $ 10M machine that cracks a DES Clear DES DES-1 DES %^C& key in 1 second would take 149 trillion text @&^( years to crack a 128-bit key 1 23 1 New Developments in Cryptography March 2012 Bart Preneel AES variants (2001) AES implementations: • AES-128 • AES-192 • AES-256 efficient/compact • 10 rounds • 12 rounds • 14 rounds • sensitive • classified • secret and top • NIST validation list: 1953 implementations (2008: 879) secret plaintext plaintext plaintext http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html round round. -
Electronic Signature Algorithms Standard
Electronic Signature Algorithms Standard Version: 1.0 Author: Qatar Public Key Infrastructure Section Document Classification: PUBLIC Published Date: June 2018 Electronic Signature Algorithms Standard Version: 1.0 Page 1 of 13 Classification: Public Document Information Date Version Reviewed By 04/06/2018 1.0 Qatar National PKI Team Electronic Signature Algorithms Standard Version: 1.0 Page 2 of 13 Classification: Public Content 1. Overview ......................................................................................................................................... 4 2. Introduction .................................................................................................................................... 4 1. Objective of the document ......................................................................................................... 4 2. Audience ..................................................................................................................................... 4 3. Security properties of electronic signature .................................................................................... 4 4. Hash algorithms .............................................................................................................................. 4 1. Hash functions ............................................................................................................................ 4 2. Hash function properties ........................................................................................................... -
A Hybrid Proof-Of-Work, Proof-Of-Stake Crypto-Currency
Memcoin2 0.05 Conceptual White Paper MEMCOIN2: A HYBRID PROOF-OF-WORK, PROOF-OF-STAKE CRYPTO-CURRENCY Adam Mackenzie1 Abstract Crypto-currencies are gaining traction as monetary instruments. A novel crypto-currency with a hybrid proof-of-work and proof- of-stake system is proposed that aords eventual democratic control of the monetary supply to the userbase through participatory voting. Among the features included to achieve this control are a novel a ‘polymorphic’ hash tree and extensive use of sequential ‘memory-hard’ secure hash algorithms. Keywords proof-of-work — proof-of-stake — crypto-currency 1Please note that this white paper is a work-in-progress. Contents 1. The use of a proof-of-work (PoW) algorithm for which an FPGA and ASIC implementation may not be easily Executive Summary 1 created (Section i). The MC2 Contribution.........................1 The btcd Platform............................1 2. A proof-of-stake (PoS) system that works alongside the PoW system to further secure the blockchain (Section Introduction 2 ii). i. Secure Hash Trees for PoW...................2 ii. A Novel PoS System.......................2 3. An internal participatory voting system for major con- iii. Miner Reward Algorithms....................3 troversies that may arise about the future of the blockchain, iv. Block Header and Transaction Data..............4 including interest rates (Section ii). v. Colored Coins...........................5 4. A new distribution scheme and diculty retargeting vi. Lightweight Clients........................5 algorithm that should aord stability to the cryptocur- References 6 rency’s equivalent at value (Section iii). Appendix A: PoW Hashing Function 7 5. A colored coin system to allow users of the blockchain Appendix B: PoS Voting for PoW Blocks 9 to create and maintain their own derivatives within Appendix C: PoW and PoS Hybrid Design 11 the blockchain itself (Section v). -
Fundamental Data Structures Contents
Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis