Combined Cache Timing Attacks and Template Attacks on Stream Cipher MUGI Shaoyu Du1,4, , Zhenqi Li1, Bin Zhang1,2, and Dongdai Lin3 1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 4 University of Chinese Academy of Sciences, Beijing, China du
[email protected] Abstract. The stream cipher MUGI was proposed by Hitachi, Ltd. in 2002 and it was specified as ISO/IEC 18033-4 for keystream genera- tion. Assuming that noise-free cache timing measurements are possible, we give the cryptanalysis of MUGI under the cache attack model. Our simulation results show that we can reduce the computation complexity of recovering all the 1216-bits internal state of MUGI to about O(276) when it is implemented in processors with 64-byte cache line. The at- tack reveals some new inherent weaknesses of MUGI’s structure. The weaknesses can also be used to conduct a noiseless template attack of O(260.51 ) computation complexity to restore the state of MUGI. And then combining these two attacks we can conduct a key-recovery attack on MUGI with about O(230) computation complexity. To the best of our knowledge, it is the first time that the analysis of cache timing attacks and template attacks are applied to full version of MUGI and that these two classes of attacks are combined to attack some cipher.