(SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION

Total Page:16

File Type:pdf, Size:1020Kb

(SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION InternationalINTERNATIONAL Journal of Electronics and JOURNAL Communication OF Engineering ELECTRONICS & Technology (IJECET),AND ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) IJECET ISSN 0976 – 6472(Online) Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME: http://www.iaeme.com/IJECET.asp © I A E M E Journal Impact Factor (2015): 7.9817 (Calculated by GISI) www.jifactor.com VHDL MODELING OF THE SRAM MODULE AND STATE MACHINE CONTROLLER (SMC) MODULE OF RC4 STREAM CIPHER ALGORITHM FOR Wi-Fi ENCRYPTION Dr.A.M. Bhavikatti 1 Mallikarjun.Mugali 2 1,2Dept of CSE, BKIT, Bhalki, Karnataka State, India ABSTRACT In this paper, VHDL modeling of the SRAM module and State Machine Controller (SMC) module of RC4 stream cipher algorithm for Wi-Fi encryption is proposed. Various individual modules of Wi-Fi security have been designed, verified functionally using VHDL-simulator. In cryptography RC4 is the most widely used software stream cipher and is used in popular protocols such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its use in new systems. It is especially vulnerable when the beginning of the output key stream is not discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to very insecure cryptosystems such as WEP . Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient in hardware, are less so in software. The design of RC4 avoids the use of LFSRs, and is ideal for software implementation, as it requires only byte manipulations. The RC4 algorithm will be implemented by FPGA using VHDL software platform. Key words: VHDL simulation, RC4 stream cipher, SRAM module, State machine diagram I. INTRODUCTION TO RC4 STREAM CIPHER Cryptographic algorithms that can provide fast implementation, small size, low complexity, and high security for resource-constrained devices such as wireless sensor devices are imperative. Conventional cryptographic algorithms are very complex and consume significant amount of energy when used by resource constrained devices for the provision of secure communication, and public key algorithms are still not feasible in sensor networks for several reasons including limited storage and excessive energy usage [1]. Therefore, security schemes should rely on a symmetric key 79 International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME cryptography especially when systems have limited hardware resources. There are a number of stream cipher algorithms presented to implement high performance software including IDEA, ORYX, LEVIATHAN, MUGI, RC4, Helix, SEAL, SOBER, and SNOW. RC4 is a proprietary stream cipher which was designed in 1987 by Ron Rivest. RC4 is widely used in security software based on stream cipher including one in the encryption of traffic to and from secure web sites such as Transport Layer Security (TLS), Secure Socket Layer (SSL), and Wired Equivalent Privacy (WEP) implementations. RC4 is fast in comparison to other algorithms and it has a simple design hardware implementation [2]. For instance, RC4 is five times faster than Data Encryption Standard (DES) and fifteen times faster than Triple-DES [3]. RC4 has been used as the data encryption algorithm for many applications and protocols. Some of the protocols and applications using RC4 include the Wi-Fi, Skype, and Bit Torrent, to name a few. Several efficient approaches to the implementation of RC4 have been proposed [4]. II. PROPOSED BLOCK DIAGRAM OF RC4 STREAM CIPHER The block diagram of the proposed architecture is shown in Figure1below. The block diagram can be divided in to 6 different sub modules as shown and these sub modules are i)The payload data processor and controller ii) SMC iii) Key set up and key stream generation block iv) K- Stream serializer v) KRAM(256× 8) vi) Multiplexer. As it is not possible to present all the simulation results in a single paper, it is divided in to three parts and first two parts are already presented in [5] and [6]. So, these modules are not discussed further in this paper. This paper deals with simulation of SRAM (256× 8) module, State Machine Controller (SMC) modules and an analysis of RC4 algorithm state machine diagram. Fig 1 Simulated module of Wi-Fi Encryption architecture III. SIMULATION OF SRAM(256× 8) MODULE The module SRAM is similar to KRAM. It is used to store the data from 0 to 255 at the address from 0 to 255 i.e. same data is assigned to the same memory location. The address is assigned by the output of Addr1.In this if MemWr is 1 and MemRd is 0, then data is written in to the RAM and if if MemWr is 0 and MemRd is 1, then data is read out one by one from the RAM. Data is 80 International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME given in parallel form and is read out in parallel form. Fig 2 shows the simulated module of SRAM and Fig 3 shows the simulated waveforms of SRAM . Fig 2 Simulated module of SRAM Fig 3 Simulated waveforms of SRAM IV ANALYSIS OF RC4 ALGORITHM STATE MACHINE DIAGRAM Different states of state machine diagram are explained briefly here. Fig 4 shows RC4 Algorithm state machine diagram. 4.1 Idle state: Data is at original state. 4.2 Initial state: In this state, first we fill the SRAM and KRAM. To fill both the RAM, the data is given directly to the KRAM for filling the data randomly as a DataBus and address is given by Addr1. The data at SRAM is filled with the help of Addr1 which gives the address and at the same 81 International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME time, same data comes from the DataMux and are loaded at the same address. Addr1 gives the location from 0 to 255(as cnt255) in both the RAM. The output of Addr1 is given to the----- Fig 4 RC4 Algorithm state machine diagram ---KRAM that gives the address for DataBus of KRAM. The input of SRAM (as Addr[7:0]) show address and Data fill linearly from DataIn as S0=0, S1=1,S2=2,-------S255=255.The initial state exists till the SRAM/KRAM fill completely( all 255 locations).After filling, initialOver=1, and state go to Addr2Cal state. 4.3 Addr2Cal state: In this state, Mux gives the KeyDataOut as MuxOut by selecting the Scl=1, and SRAM gives the data through DataOut to DataDMux and SellDataOut select this DataOut as SR1 [7:0] and load this value in S_Reg1 and all these values from A2, SR1 and MuxOut are added. 4.4 Addr2Ld state: In this state, the output of Adder 1(Adder 1Out) is loaded in to the Addr2 register. 4.5 SJ State: Loaded value at Addr2 gives j value. This j value is the address, which is selected by SelAddr(3:0) of AddrMux. The output of AddrMux gives address of SRAM. The value of that location is obtained as DataOut, selected by DatMux as SR2 [7:0] and stored at S_Reg2 as SJ. 4.6 Swap SI : In this state, the address is taken from Addr2, which is selected by AddrMux as Addr[7:0] and the data is loaded on this address of SRAM as DataIn by selecting Reg2[7:0] through DataMux. 4.7 Swap SJ: In this state, the address is taken from Addr1, which is selected by AddrMux as Addr[7:0] and the data is loaded on this address of SRAM as DataIn by selecting Reg1[7:0] through DataMux. All process like Addr2Cal, Addr2Ld, SJ, Swap SI and Swap SJ occurred 255 times. When Keysetupover=1, Flag=1, then it goes to Addr2Gen state. 4.8 Addr2Gen state: At this state, again we obtained the value of J by KeySetup phase. 4.9TCal state: When Swap SJ is complete, flag will be high and reaches the TCal state. 82 International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME 4.10Kbyte state: The data was given to FIFO in the initial state is now loaded in to DataSerializer. 4.11 Encryption state: The key data byte from K_StreamSerializer and plaintext from DataSerializer comes out serially in the form of bits. IV. STATE MACHINE CONTROLLER (SMC) MODULE This is considered as the heart of the whole architecture. Fig 5 shows the State Machine Controller (SMC) module. By this, we can control all the modules .This state machine will work whenever InitialOver and KeySetUpOver are high. This means that all the modules will work step by step. First it controls Addr, SRAM and KRAM. When enable is high means that it was writing key data in it. Then it is going to the another state i.e. Adder 2Ld. In this state, adder will add the given input and it is given to the SRAM and this process run up to 256 times. In this process, swapping of key data bytes is performed. Then it goes to Adder 2Gen.In this state, it takes the data from S_Reg and gives it to the Adder i.e in Adder 2Ld.It adds the given input and then gives it to the SRAM with the help of AddrMux, which swap it and then gives it to the K_SteamSerilizer.
Recommended publications
  • LNCS 9065, Pp
    Combined Cache Timing Attacks and Template Attacks on Stream Cipher MUGI Shaoyu Du1,4, , Zhenqi Li1, Bin Zhang1,2, and Dongdai Lin3 1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 4 University of Chinese Academy of Sciences, Beijing, China du [email protected] Abstract. The stream cipher MUGI was proposed by Hitachi, Ltd. in 2002 and it was specified as ISO/IEC 18033-4 for keystream genera- tion. Assuming that noise-free cache timing measurements are possible, we give the cryptanalysis of MUGI under the cache attack model. Our simulation results show that we can reduce the computation complexity of recovering all the 1216-bits internal state of MUGI to about O(276) when it is implemented in processors with 64-byte cache line. The at- tack reveals some new inherent weaknesses of MUGI’s structure. The weaknesses can also be used to conduct a noiseless template attack of O(260.51 ) computation complexity to restore the state of MUGI. And then combining these two attacks we can conduct a key-recovery attack on MUGI with about O(230) computation complexity. To the best of our knowledge, it is the first time that the analysis of cache timing attacks and template attacks are applied to full version of MUGI and that these two classes of attacks are combined to attack some cipher.
    [Show full text]
  • A Practical Attack on Broadcast RC4
    A Practical Attack on Broadcast RC4 Itsik Mantin and Adi Shamir Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel. {itsik,shamir}@wisdom.weizmann.ac.il Abstract. RC4is the most widely deployed stream cipher in software applications. In this paper we describe a major statistical weakness in RC4, which makes it trivial to distinguish between short outputs of RC4 and random strings by analyzing their second bytes. This weakness can be used to mount a practical ciphertext-only attack on RC4in some broadcast applications, in which the same plaintext is sent to multiple recipients under different keys. 1 Introduction A large number of stream ciphers were proposed and implemented over the last twenty years. Most of these ciphers were based on various combinations of linear feedback shift registers, which were easy to implement in hardware, but relatively slow in software. In 1987Ron Rivest designed the RC4 stream cipher, which was based on a different and more software friendly paradigm. It was integrated into Microsoft Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL, and many other applications, and has thus become the most widely used software- based stream cipher. In addition, it was chosen to be part of the Cellular Digital Packet Data specification. Its design was kept a trade secret until 1994, when someone anonymously posted its source code to the Cypherpunks mailing list. The correctness of this unofficial description was confirmed by comparing its outputs to those produced by licensed implementations. RC4 has a secret internal state which is a permutation of all the N =2n possible n bits words.
    [Show full text]
  • Most Popular ■ CORN STALK RUNNER at Flock Together This 2017 TROY TURKEY TROT
    COVERING FREE! UPSTATE NY NOVEMBER SINCE 2000 2018 Flock Together this Thanksgiving ■ 5K START AT 2013 TROY TURKEY TROT. JOIN THE CONTENTS 1 Running & Walking Most Popular ■ CORN STALK RUNNER AT Flock Together this 2017 TROY TURKEY TROT. Thanksgiving! 3 Alpine Skiing & Boarding Strutting Day! Ready for Ski Season! By Laura Clark 5 News Briefs 5 From the Publishers hat I enjoy most about Thanksgiving is that it is a teams are encouraged and die-hards relaxed, all-American holiday. And what is more are invited to try for the individual 50K option. 6-9 CALENDAR OF EVENTS WAmerican than our plucky, ungainly turkey? Granted, Proceeds benefit the Regional Food Bank of Northeastern New although Ben Franklin lost his bid to elevate our native species to November to January York, enabling them to ensure a bountiful Thanksgiving for every- national symbol status, the turkey gets the last cackle. For when one. (fleetfeetalbany.com) Things to Do was the last time you celebrated eagle day? On Thanksgiving Day, Thursday, November 22, get ready for 11 Hiking, Snowshoeing In a wishbone world, Thanksgiving gives the least offense. the most popular running day of the whole year. Sample one of Sure, it is a worry for turkeys but a trade-off if you consider all the these six races in our area. & Camping free publicity. While slightly distasteful for vegetarians, there are While most trots cater to the 5K crowd, perfect for strollers, West Stony Creek: Well-Suited all those yummy sides and desserts to consider. Best of all is the aspiring turklings and elders, the premiere 71st annual Troy emphasis on family members, from toms to hens to the littlest Turkey Trot is the only area race where it is still possible to double for Late Fall/Early Winter turklings (think ducklings).
    [Show full text]
  • The Moral Character of Cryptographic Work⋆
    The Moral Character of Cryptographic Work? Phillip Rogaway Department of Computer Science University of California, Davis, USA [email protected] December 2015 (minor revisions March 2016) Abstract. Cryptography rearranges power: it configures who can do what, from what. This makes cryptography an inherently political tool, and it confers on the field an intrinsically moral dimension. The Snowden revelations motivate a reassessment of the political and moral positioning of cryptography. They lead one to ask if our inability to effectively address mass surveillance constitutes a failure of our field. I believe that it does. I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work. Keywords: cryptography · ethics · mass surveillance · privacy · Snowden · social responsibility Preamble. Most academic cryptographers seem to think that our field is a fun, deep, and politically neutral game|a set of puzzles involving communicating parties and notional adversaries. This vision of who we are animates a field whose work is intellectually impressive and rapidly produced, but also quite inbred and divorced from real-world concerns. Is this what cryptography should be like? Is it how we should expend the bulk of our intellectual capital? For me, these questions came to a head with the Snowden disclosures of 2013. If cryptography's most basic aim is to enable secure communications, how could it not be a colossal failure of our field when ordinary people lack even a modicum of communication privacy when interacting electronically? Yet I soon realized that most cryptographers didn't see it this way.
    [Show full text]
  • Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Henricksen, Matthew& Dawson, Edward (2006) Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond. Lecture Notes in Computer Science, 4058, Article number: AISP52-63. This file was downloaded from: https://eprints.qut.edu.au/24788/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1007/11780656_5 Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond Matt Henricksen and Ed Dawson Information Security Institute, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland, 4001, Australia.
    [Show full text]
  • An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext
    An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext By Isaac Quinn DuPont A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Information University of Toronto © Copyright by Isaac Quinn DuPont 2017 ii An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext Isaac Quinn DuPont Doctor of Philosophy Faculty of Information University of Toronto 2017 Abstract Tis dissertation is an archeological study of cryptography. It questions the validity of thinking about cryptography in familiar, instrumentalist terms, and instead reveals the ways that cryptography can been understood as writing, media, and computation. In this dissertation, I ofer a critique of the prevailing views of cryptography by tracing a number of long overlooked themes in its history, including the development of artifcial languages, machine translation, media, code, notation, silence, and order. Using an archeological method, I detail historical conditions of possibility and the technical a priori of cryptography. Te conditions of possibility are explored in three parts, where I rhetorically rewrite the conventional terms of art, namely, plaintext, encryption, and ciphertext. I argue that plaintext has historically been understood as kind of inscription or form of writing, and has been associated with the development of artifcial languages, and used to analyze and investigate the natural world. I argue that the technical a priori of plaintext, encryption, and ciphertext is constitutive of the syntactic iii and semantic properties detailed in Nelson Goodman’s theory of notation, as described in his Languages of Art. I argue that encryption (and its reverse, decryption) are deterministic modes of transcription, which have historically been thought of as the medium between plaintext and ciphertext.
    [Show full text]
  • Solutions Manual
    SOLUTIONS MANUAL CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE FOURTH EDITION WILLIAM STALLINGS Copyright 2006: William Stallings -2- © 2006 by William Stallings All rights reserved. No part of this document may be reproduced, in any form or by any means, or posted on the Internet, without permission in writing from the author. -3- NOTICE This manual contains solutions to all of the review questions and homework problems in Cryptography and Network Security, Fourth Edition. If you spot an error in a solution or in the wording of a problem, I would greatly appreciate it if you would forward the information via email to [email protected]. An errata sheet for this manual, if needed, is available at ftp://shell.shore.net/members/w/s/ws/S. W.S. -4- TABLE OF CONTENTS Chapter 1: Introduction..............................................................................................5 Chapter 2: Classical Encryption Techniques ............................................................7 Chapter 3: Block Ciphers and the Date Encryption Standard .............................. 13 Chapter 4: Finite Fields ............................................................................................ 21 Chapter 5: Advanced Encryption Standard ........................................................... 28 Chapter 6: More on Symmetric Ciphers ................................................................. 33 Chapter 7: Confidentiality Using Symmetric Encryption..................................... 38 Chapter 8: Introduction to Number Theory..........................................................
    [Show full text]
  • RC4 Encryption
    Ralph (Eddie) Rise Suk-Hyun Cho Devin Kaylor RC4 Encryption RC4 is an encryption algorithm that was created by Ronald Rivest of RSA Security. It is used in WEP and WPA, which are encryption protocols commonly used on wireless routers. The workings of RC4 used to be a secret, but its code was leaked onto the internet in 1994. RC4 was originally very widely used due to its simplicity and speed. Typically 16 byte keys are used for strong encryption, but shorter key lengths are also widely used due to export restrictions. Over time this code was shown to produce biased outputs towards certain sequences, mostly in first few bytes of the keystream generated. This led to a future version of the RC4 code that is more widely used today, called RC4-drop[n], in which the first n bytes of the keystream are dropped in order to get rid of this biased output. Some notable uses of RC4 are implemented in Microsoft Excel, Adobe's Acrobat 2.0 (1994), and BitTorrent clients. To begin the process of RC4 encryption, you need a key, which is often user-defined and between 40-bits and 256-bits. A 40-bit key represents a five character ASCII code that gets translated into its 40 character binary equivalent (for example, the ASCII key "pwd12" is equivalent to 0111000001110111011001000011000100110010 in binary). The next part of RC4 is the key-scheduling algorithm (KSA), listed below (from Wikipedia). for i from 0 to 255 S[i] := i endfor j := 0 for i from 0 to 255 j := (j + S[i] + key[i mod keylength]) mod 256 swap(S[i],S[j]) endfor KSA creates an array S that contains 256 entries with the digits 0 through 255, as in the table below.
    [Show full text]
  • Bias in the LEVIATHAN Stream Cipher
    Bias in the LEVIATHAN Stream Cipher Paul Crowley1? and Stefan Lucks2?? 1 cryptolabs Amsterdam [email protected] 2 University of Mannheim [email protected] Abstract. We show two methods of distinguishing the LEVIATHAN stream cipher from a random stream using 236 bytes of output and pro- portional effort; both arise from compression within the cipher. The first models the cipher as two random functions in sequence, and shows that the probability of a collision in 64-bit output blocks is doubled as a re- sult; the second shows artifacts where the same inputs are presented to the key-dependent S-boxes in the final stage of the cipher for two suc- cessive outputs. Both distinguishers are demonstrated with experiments on a reduced variant of the cipher. 1 Introduction LEVIATHAN [5] is a stream cipher proposed by David McGrew and Scott Fluhrer for the NESSIE project [6]. Like most stream ciphers, it maps a key onto a pseudorandom keystream that can be XORed with the plaintext to generate the ciphertext. But it is unusual in that the keystream need not be generated in strict order from byte 0 onwards; arbitrary ranges of the keystream may be generated efficiently without the cost of generating and discarding all prior val- ues. In other words, the keystream is “seekable”. This property allows data from any part of a large encrypted file to be retrieved efficiently, without decrypting the whole file prior to the desired point; it is also useful for applications such as IPsec [2]. Other stream ciphers with this property include block ciphers in CTR mode [3].
    [Show full text]
  • RC4-2S: RC4 Stream Cipher with Two State Tables
    RC4-2S: RC4 Stream Cipher with Two State Tables Maytham M. Hammood, Kenji Yoshigoe and Ali M. Sagheer Abstract One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipher which can be applied to many security applications in real time security. However, RC4 cipher shows some weaknesses including a correlation problem between the public known outputs of the internal state. We propose RC4 stream cipher with two state tables (RC4-2S) as an enhancement to RC4. RC4-2S stream cipher system solves the correlation problem between the public known outputs of the internal state using permutation between state 1 (S1) and state 2 (S2). Furthermore, key generation time of the RC4-2S is faster than that of the original RC4 due to less number of operations per a key generation required by the former. The experimental results confirm that the output streams generated by the RC4-2S are more random than that generated by RC4 while requiring less time than RC4. Moreover, RC4-2S’s high resistivity protects against many attacks vulnerable to RC4 and solves several weaknesses of RC4 such as distinguishing attack. Keywords Stream cipher Á RC4 Á Pseudo-random number generator This work is based in part, upon research supported by the National Science Foundation (under Grant Nos. CNS-0855248 and EPS-0918970). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the funding agencies or those of the employers. M. M. Hammood Applied Science, University of Arkansas at Little Rock, Little Rock, USA e-mail: [email protected] K.
    [Show full text]
  • Cryptography and Network Security Chapter 12
    Chapter 12 – Message CryptographyCryptography andand Authentication Codes NetworkNetwork SecuritySecurity • At cats' green on the Sunday he took the message from the inside of the pillar and added Peter Moran's name to ChapterChapter 1212 the two names already printed there in the "Brontosaur" code. The message now read: “Leviathan to Dragon: Martin Hillman, Trevor Allan, Peter Moran: observe and tail. ” What was the good of it John hardly knew. He felt Fifth Edition better, he felt that at last he had made an attack on Peter Moran instead of waiting passively and effecting no by William Stallings retaliation. Besides, what was the use of being in possession of the key to the codes if he never took Lecture slides by Lawrie Brown advantage of it? (with edits by RHB) • —Talking to Strange Men, Ruth Rendell Outline Message Authentication • we will consider: • message authentication is concerned with: – message authentication requirements – protecting the integrity of a message – message authentication using encryption – validating identity of originator – non -repudiation of origin (dispute resolution) – MACs • three alternative approaches used: – HMAC authentication using a hash function – hash functions (see Ch 11) – DAA – message encryption – CMAC authentication using a block cipher – message authentication codes ( MACs ) and CCM – GCM authentication using a block cipher – PRNG using Hash Functions and MACs Symmetric Message Encryption Message Authentication Code • encryption can also provides authentication (MAC) • if symmetric encryption
    [Show full text]
  • On the Use of Continued Fractions for Stream Ciphers
    On the use of continued fractions for stream ciphers Amadou Moctar Kane Département de Mathématiques et de Statistiques, Université Laval, Pavillon Alexandre-Vachon, 1045 av. de la Médecine, Québec G1V 0A6 Canada. [email protected] May 25, 2013 Abstract In this paper, we present a new approach to stream ciphers. This method draws its strength from public key algorithms such as RSA and the development in continued fractions of certain irrational numbers to produce a pseudo-random stream. Although the encryption scheme proposed in this paper is based on a hard mathematical problem, its use is fast. Keywords: continued fractions, cryptography, pseudo-random, symmetric-key encryption, stream cipher. 1 Introduction The one time pad is presently known as one of the simplest and fastest encryption methods. In binary data, applying a one time pad algorithm consists of combining the pad and the plain text with XOR. This requires the use of a key size equal to the size of the plain text, which unfortunately is very difficult to implement. If a deterministic program is used to generate the keystream, then the system will be called stream cipher instead of one time pad. Stream ciphers use a great deal of pseudo- random generators such as the Linear Feedback Shift Registers (LFSR); although cryptographically weak [37], the LFSRs present some advantages like the fast time of execution. There are also generators based on Non-Linear transitions, examples included the Non-Linear Feedback Shift Register NLFSR and the Feedback Shift with Carry Register FCSR. Such generators appear to be more secure than those based on LFSR.
    [Show full text]