MICKEY 2.0. 85: a Secure and Lighter MICKEY 2.0 Cipher Variant With

Total Page:16

File Type:pdf, Size:1020Kb

MICKEY 2.0. 85: a Secure and Lighter MICKEY 2.0 Cipher Variant With S S symmetry Article MICKEY 2.0.85: A Secure and Lighter MICKEY 2.0 Cipher Variant with Improved Power Consumption for Smaller Devices in the IoT Ahmed Alamer 1,2,*, Ben Soh 1 and David E. Brumbaugh 3 1 Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences, La Trobe University, Victoria 3086, Australia; [email protected] 2 Department of Mathematics, College of Science, Tabuk University, Tabuk 7149, Saudi Arabia 3 Techno Authority, Digital Consultant, 358 Dogwood Drive, Mobile, AL 36609, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-431-292-034 Received: 31 October 2019; Accepted: 20 December 2019; Published: 22 December 2019 Abstract: Lightweight stream ciphers have attracted significant attention in the last two decades due to their security implementations in small devices with limited hardware. With low-power computation abilities, these devices consume less power, thus reducing costs. New directions in ultra-lightweight cryptosystem design include optimizing lightweight cryptosystems to work with a low number of gate equivalents (GEs); without affecting security, these designs consume less power via scaled-down versions of the Mutual Irregular Clocking KEYstream generator—version 2-(MICKEY 2.0) cipher. This study aims to obtain a scaled-down version of the MICKEY 2.0 cipher by modifying its internal state design via reducing shift registers and modifying the controlling bit positions to assure the ciphers’ pseudo-randomness. We measured these changes using the National Institutes of Standards and Testing (NIST) test suites, investigating the speed and power consumption of the proposed scaled-down version named MICKEY 2.0.85. The (85) refers to the new modified bit-lengths of each MICKEY 2.0 register. The results show that it is faster, requires less power, and needs fewer GEs. The proposed variant will enhance the security of applications, such asRadio-frequency identification (RFID) technology, sensor networks, and in Internet of things (IoT) in general. It also will enhance research on the optimization of existing lightweight cryptosystems. Keywords: cryptography; MICKEY 2.0 cipher; RFID; power consumption; lightweight encryption; gate equivalents; encryption 1. Introduction The need to implement lightweight, synchronous encryption algorithms that are suitable for RFID technology is significantly growing. These algorithms are important factors in the cost reduction in small and limited-sized devices and in ensuring financial efficiency in the use of smaller microcontrollers. Moreover, encryption methods need to be tested, as demonstrated in the tests performed for MICKEY 2.0 [1], and scaled-down variants should be proposed with standard randomness tests to ensure security. We introduced a further optimized version of MICKEY 2.0, which is suitable for implementation in real-life applications that require smaller ship sizes with less memory and power consumption (MICKEY 2.0.85). Then, we evaluated its performance to demonstrate its resistance against possible statistical attacks. Obtaining a scaled-down version of MICKEY 2.0 while maintaining its security is challenging. To achieve this, the objective is to reduce the internal state to save the number of gate equivalents (GEs), Symmetry 2020, 12, 32; doi:10.3390/sym12010032 www.mdpi.com/journal/symmetry Symmetry 2020, 12, 32 2 of 21 and to use the National Institutes of Standards and Testing (NIST) test suite [2] to test the keystream sequences that are sufficiently large in length and number. Lightweight cryptosystems aim to provide security for devices with specific restraints, such as small memory size and lower computing power and power consumption. Currently, the most effective and widely used cryptosystems, such as Advanced Encryption Standard (AES) [3], require greater computation ability as well as greater ship sizes. The non-lightweight ciphers have slower speed and low throughput [4,5]. Lightweight cryptosystems provide solutions for issues raised by implementing AES, for example, encryption speed and power consumption. Lightweight stream ciphers, for example, present a more secure solution for small devices, such as microcontrollers and RFID components, namely, RFID tags and RFID readers. Security is needed for small components in important technology, such as sensor networks and IoT technology [6–8]. Ciphers such as Trivium has been investigated to design scaled-down versions to suit small technology, such as the Micro-Trivium designed by [9]. However, our proposed MICKEY 2.0 cipher variants consume less power and require fewer GEs than other ciphers. This is discussed in more detail in Section 6.3. Considering the importance of applying a NIST candidate cipher to hardware [10] demonstrated how NIST can be used as a standard evaluation tool for ciphers. Moreover, their study discussed the hardware design and evaluations standardized by NIST for lightweight ciphers and investigated ACE and WAGE Ciphers. Additional details on the implementation of microcontrollers can be found in [11]. We chose to reduce the power consumption and increase the processing speed by reducing the number of bits in the internal registers (and corresponding driving data structures). The novel discovery is that the overall randomness of the keystream generated was actually slightly better than the MICKEY 2.0 algorithm. This indicated that the additional bits in MICKEY 2.0 were adding power consumption and time without providing additional value. We propose a MICKEY 2.0 variant to reduce the power consumption and the number of GEs without compromising security. By optimizing and testing the proposed variant with the NIST test suite for the pseudo-randomness comparison between MICKEY 2.0 and MICKEY 1.0, and performing a preliminary cryptanalysis, the security level for this variant appears to be as good as, or slightly better than, MICKEY 2.0. Additionally, its performance in terms of security, speed, and power consumption is measured. The main contributions of this paper to existing lightweight encryption methods are as follows: 1. We propose a new MICKEY 2.0 cipher variant, called MICKEY 2.0.85. This variant has been tested for pseudo-randomness, which, to the best of our knowledge, has never been done before. 2. We presented a reduction method for MICKEY 2.0, which resulted in fewer GES for MICKEY 2.0.85. 3. We propose a new variant (MICKEY 2.0.85), which is 23% faster and consumes 16% less power than MICKEY 2.0 while maintaining similar pseudo-randomness test results. 4. We performed two common cryptanalysis processes, each of which shows the lighter variant to be at least as resistant to attacks as its less efficient predecessor. This paper is organized as follows. The background and an overview of the MICKEY algorithm are provided in Section2. The study methodology is presented in Section3. Section4 presents an overview of the related work on symmetric encryption and lightweight encryption, in addition to the scaled-down version of the Trivium. Section5 provides an illustrated description of the MICKEY 2.0 scaled-down methodology. Section6 describes the utilization of the results and analysis of the following aspects: (1) the NIST test suite to test the pseudo-randomness of MICKEY 2.0 and MICKEY 2.0.85, (2) the speed test performance, and (3) the power consumption tests with the number of GEs. Section7 contains our cryptanalysis results. Section8 provides an overall discussion, and Section9 concludes the paper, along with suggestions for possible future work. Symmetry 2020, 12, 32 3 of 21 2. Background MICKEY 2.0 is a lightweight stream cipher designed for hardware implementation and can also be implemented in software applications. The following section provides an overview of how the MICKEY 2.0 cipher works. Additional details can be found in [1]. Symmetry 2020, 12, 32 3 of 23 2.1. MICKEY 2.0 Family of Ciphers 2. Background The MICKEYMICKEY 2.0 2.0 cipher is a lightweight family generates stream cipher a keystream designed for using hardware two implementation internal registers. and can These also registers are used tobe determine implemented the in valuesoftware (1 applications. or 0) for any The given following bit section position provides within an theoverview keystream. of how the In general,MICKEY a keystream2.0 cipher works. is intended Additional to details be XORed can be found with in a [1]. plaintext message to generate ciphertext. Ideally, the2.1. keystream MICKEY 2.0 should Family of be Ciphers random enough to mask any statistical patterns within the plaintext and to be irreversible so that the key cannot be derived. The MICKEY 2.0 cipher family generates a keystream using two internal registers. These Theregisters original are MICKEYused to determine algorithm the value (MICKEY(1 or 0) for any 1.0) givenwas bit position vulnerable within theto keystream. statistical attacks. Not surprisingly,In general, MICKEY a keystream 1.0 failed is intended all butto be oneXORed of with the a NIST plaintext randomness message to generate tests. ciphertext. The MICKEY 2.0 cipher is anIdeally, improved the keystream version should of be MICKEY random enough 1.0 [12 to ].mask The any MICKEY statistical patterns 2.0 cipher within has the plaintext two registers, R (linear register)and to andbe irreversible S (nonlinear so that register). the key cannot These be derived. registers are initialized by merging an 80-bit key and The original MICKEY algorithm (MICKEY 1.0) was vulnerable to statistical attacks. Not an 80-bit initializationsurprisingly, MICKEY vector 1.0 (IV). failed all but one of the NIST randomness tests. The MICKEY 2.0 cipher is As thean keystream improved version is generated, of MICKEY the 1.0 [12]. ‘clock’ The isMICKEY advanced 2.0 cipher along hasboth two registers, the linear R (linear (R) andregister) nonlinear (S) registers basedand S on(nonlinear the state register). of the These internal registers control are initialized structures, by whichmerging include an 80-bit R_TAPS, key and an COMP0, 80-bit COMP1, FB0, and FB1.initialization For simplicity, vector (IV).we will focus on the scaled-down process.
Recommended publications
  • A Differential Fault Attack on MICKEY
    A Differential Fault Attack on MICKEY 2.0 Subhadeep Banik and Subhamoy Maitra Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road, Kolkata-108. s.banik [email protected], [email protected] Abstract. In this paper we present a differential fault attack on the stream cipher MICKEY 2.0 which is in eStream's hardware portfolio. While fault attacks have already been reported against the other two eStream hardware candidates Trivium and Grain, no such analysis is known for MICKEY. Using the standard assumptions for fault attacks, we show that if the adversary can induce random single bit faults in the internal state of the cipher, then by injecting around 216:7 faults and performing 232:5 computations on an average, it is possible to recover the entire internal state of MICKEY at the beginning of the key-stream generation phase. We further consider the scenario where the fault may affect at most three neighbouring bits and in that case we require around 218:4 faults on an average. Keywords: eStream, Fault attacks, MICKEY 2.0, Stream Cipher. 1 Introduction The stream cipher MICKEY 2.0 [4] was designed by Steve Babbage and Matthew Dodd as a submission to the eStream project. The cipher has been selected as a part of eStream's final hardware portfolio. MICKEY is a synchronous, bit- oriented stream cipher designed for low hardware complexity and high speed. After a TMD tradeoff attack [16] against the initial version of MICKEY (ver- sion 1), the designers responded by tweaking the design by increasing the state size from 160 to 200 bits and altering the values of some control bit tap loca- tions.
    [Show full text]
  • High Performance Architecture for LILI-II Stream Cipher
    International Journal of Computer Applications (0975 – 8887) Volume 107 – No 13, December 2014 High Performance Architecture for LILI-II Stream Cipher N. B. Hulle R. D. Kharadkar, Ph.D. S. S. Dorle, Ph.D. GHRIEET, Pune GHRIEET, Pune GHRCE, Nagpur Domkhel Road Domkhel Road Hingana Road Wagholi, Pune Wagholi, Pune Nagpur ABSTRACT cipher. This architecture uses same clock for both LFSRs. It is Proposed work presents high performance architecture for capable of shifting LFSRD content by one to four stages, LILI-II stream cipher. This cipher uses 128 bit key and 128 bit depending on value of function FC in single clock cycle IV for initialization of two LFSR. Proposed architecture uses without losing any data from function FC. single clock for both LFSRs, so this architecture will be useful in high speed communication applications. Presented 2. LILI-II STREAM CIPHER architecture uses four bit shifting of LFSR in single clock LILI-II is synchronous stream cipher developed by A. Clark et D al. in 2002 by removing existing weaknesses of LILI-128 cycle without losing any data items from function FC. Proposed architecture is coded by using VHDL language with stream cipher. It consists of two subsystems, clock controlled CAD tool Xilinx ISE Design Suite 13.2 and targeted hardware subsystem and data generation subsystem as shown in Fig. 1. is Xilinx Virtex5 FPGA having device xc4vlx60, with KEY IV package ff1148. Proposed architecture achieved throughput of 127 128 128 224.7 Mbps at 224.7 MHz frequency. 127 General Terms Hardware implementation of stream ciphers LFSRc LFSRd ... Keywords X0 X126 X0 X1 X96 X122 LILI, Stream cipher, clock controlled, FPGA, LFSR.
    [Show full text]
  • Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng
    Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng 1 Introduction – Chris Eng _ Director of Security Services, Veracode _ Former occupations . 2000-2006: Senior Consulting Services Technical Lead with Symantec Professional Services (@stake up until October 2004) . 1998-2000: US Department of Defense _ Primary areas of expertise . Web Application Penetration Testing . Network Penetration Testing . Product (COTS) Penetration Testing . Exploit Development (well, a long time ago...) _ Lead developer for @stake’s now-extinct WebProxy tool 2 Assumptions _ This talk is aimed primarily at penetration testers but should also be useful for developers to understand how your application might be vulnerable _ Assumes basic understanding of cryptographic terms but requires no understanding of the underlying math, etc. 3 Agenda 1 Problem Statement 2 Crypto Refresher 3 Analysis Techniques 4 Case Studies 5 Q & A 4 Problem Statement 5 Problem Statement _ What do you do when you encounter unknown data in web applications? . Cookies . Hidden fields . GET/POST parameters _ How can you tell if something is encrypted or trivially encoded? _ How much do I really have to know about cryptography in order to exploit implementation weaknesses? 6 Goals _ Understand some basic techniques for analyzing and breaking down unknown data _ Understand and recognize characteristics of bad crypto implementations _ Apply techniques to real-world penetration tests 7 Crypto Refresher 8 Types of Ciphers _ Block Cipher . Operates on fixed-length groups of bits, called blocks . Block sizes vary depending on the algorithm (most algorithms support several different block sizes) . Several different modes of operation for encrypting messages longer than the basic block size .
    [Show full text]
  • Key Differentiation Attacks on Stream Ciphers
    Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register.
    [Show full text]
  • Optimizing the Placement of Tap Positions and Guess and Determine
    Optimizing the placement of tap positions and guess and determine cryptanalysis with variable sampling S. Hodˇzi´c, E. Pasalic, and Y. Wei∗† Abstract 1 In this article an optimal selection of tap positions for certain LFSR-based encryption schemes is investigated from both design and cryptanalytic perspective. Two novel algo- rithms towards an optimal selection of tap positions are given which can be satisfactorily used to provide (sub)optimal resistance to some generic cryptanalytic techniques applicable to these schemes. It is demonstrated that certain real-life ciphers (e.g. SOBER-t32, SFINKS and Grain-128), employing some standard criteria for tap selection such as the concept of full difference set, are not fully optimized with respect to these attacks. These standard design criteria are quite insufficient and the proposed algorithms appear to be the only generic method for the purpose of (sub)optimal selection of tap positions. We also extend the framework of a generic cryptanalytic method called Generalized Filter State Guessing Attacks (GFSGA), introduced in [26] as a generalization of the FSGA method, by applying a variable sampling of the keystream bits in order to retrieve as much information about the secret state bits as possible. Two different modes that use a variable sampling of keystream blocks are presented and it is shown that in many cases these modes may outperform the standard GFSGA mode. We also demonstrate the possibility of employing GFSGA-like at- tacks to other design strategies such as NFSR-based ciphers (Grain family for instance) and filter generators outputting a single bit each time the cipher is clocked.
    [Show full text]
  • MTH6115 Cryptography 4.1 Fish
    MTH6115 Cryptography Notes 4: Stream ciphers, continued Recall from the last part the definition of a stream cipher: Definition: A stream cipher over an alphabet of q symbols a1;:::;aq requires a key, a random or pseudo-random string of symbols from the alphabet with the same length as the plaintext, and a substitution table, a Latin square of order q (whose entries are symbols from the alphabet, and whose rows and columns are indexed by these symbols). If the plaintext is p = p1 p2 ::: pn and the key is k = k1k2 :::kn, then the ciphertext is z = z1z2 :::zn, where zt = pt ⊕ kt for t = 1;:::;n; the operation ⊕ is defined as follows: ai ⊕a j = ak if and only if the symbol in the row labelled ai and the column labelled a j of the substitution table is ak. We extend the definition of ⊕ to denote this coordinate-wise operation on strings: thus, we write z = p ⊕ k, where p;k;z are the plaintext, key, and ciphertext strings. We also define the operation by the rule that p = z k if z = p ⊕ k; thus, describes the operation of decryption. 4.1 Fish (largely not examinable) A simple improvement of the Vigenere` cipher is to encipher twice using two differ- ent keys k1 and k2. Because of the additive nature of the cipher, this is the same as enciphering with k1 + k2. The advantage is that the length of the new key is the least common multiple of the lengths of k1 and k2. For example, if we encrypt a message once with the key FOXES and again with the key WOLVES, the new key is obtained by encrypting a six-fold repeat of FOXES with a five-fold repeat of WOLVES, namely BCIZWXKLPNJGTSDASPAGQJBWOTZSIK 1 The new key has period 30.
    [Show full text]
  • Statistical Attack on RC4 Distinguishing WPA
    Statistical Attack on RC4 Distinguishing WPA Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux EPFL CH-1015 Lausanne, Switzerland http://lasecwww.epfl.ch Abstract. In this paper we construct several tools for manipulating pools of bi- ases in the analysis of RC4. Then, we show that optimized strategies can break WEP based on 4000 packets by assuming that the first bytes of plaintext are known for each packet. We describe similar attacks for WPA. Firstly, we de- scribe a distinguisher for WPA of complexity 243 and advantage 0.5 which uses 240 packets. Then, based on several partial temporary key recovery attacks, we recover the full 128-bit temporary key by using 238 packets. It works within a complexity of 296. So far, this is the best attack against WPA. We believe that our analysis brings further insights on the security of RC4. 1 Introduction RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anony- mously posted in 1994. Nowadays, RC4 is widely used in SSL/TLS and Wi-Fi 802.11 wireless communications. 802.11 [1] used to be protected by WEP (Wired Equivalent Privacy) which is now being replaced by WPA (Wi-Fi Protected Access) due to security weaknesses. WEP uses RC4 with a pre-shared key. Each packet is encrypted by a XOR to a keystream generated by RC4. The RC4 key is the pre-shared key prepended with a 3- byte nonce IV. The IV is sent in clear for self-synchronization. There have been several attempts to break the full RC4 algorithm but it has only been devastating so far in this scenario.
    [Show full text]
  • State Convergence and Keyspace Reduction of the Mixer Stream Cipher
    State convergence and keyspace reduction of the Mixer stream cipher Sui-Guan Teo1, Kenneth Koon-Ho Wong1, Leonie Simpson1;2, and Ed Dawson1 1 Information Security Institute, Queensland University of Technology fsg.teo,kkwong,[email protected] 2 Faculty of Science and Technology, Queensland University of Technology GPO Box 2434, Brisbane Qld 4001, Australia [email protected] Keywords: Stream cipher, initialisation, state convergence, Mixer, LILI, Grain Abstract. This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, re- sulting in a further reduction of the effective key space. 1 Introduction Many keystream generators for stream ciphers are based on shift registers, partic- ularly Linear Feedback Shift Registers (LFSRs). Using the output of a regularly- clocked LFSR directly as keystream is cryptographically weak due to the linear properties of LFSR sequences. To mask this linearity, stream cipher designers use LFSRs and introduce non-linearity either explicitly through the use of nonlinear Boolean functions or implicitly through through the use of irregular clocking.
    [Show full text]
  • Stream Ciphers (Contd.)
    Stream Ciphers (contd.) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives • Non-linear feedback shift registers • Stream ciphers using LFSRs: – Non-linear combination generators – Non-linear filter generators – Clock controlled generators – Other Stream Ciphers Low Power Ajit Pal IIT Kharagpur 1 Non-linear feedback shift registers • A Feedback Shift Register (FSR) is non-singular iff for all possible initial states every output sequence of the FSR is periodic. de Bruijn Sequence An FSR with feedback function fs(jj−−12 , s ,..., s jL − ) is non-singular iff f is of the form: fs=⊕jL−−−−+ gss( j12 , j ,..., s jL 1 ) for some Boolean function g. The period of a non-singular FSR with length L is at most 2L . If the period of the output sequence for any initial state of a non-singular FSR of length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a de Bruijn sequence. Low Power Ajit Pal IIT Kharagpur 2 Example f (,xxx123 , )1= ⊕⊕⊕ x 2 x 3 xx 12 t x1 x2 x3 t x1 x2 x3 0 0 0 0 4 0 1 1 1 1 0 0 5 1 0 1 2 1 1 0 6 0 1 0 3 1 1 1 3 0 0 1 Converting a maximal length LFSR to a de-Bruijn FSR Let R1 be a maximum length LFSR of length L with linear feedback function: fs(jj−−12 , s ,..., s jL − ). Then the FSR R2 with feedback function: gs(jj−−12 , s ,..., s jL − )=⊕ f sjj−−12 , s ,..., s j −L+1 is a de Bruijn FSR.
    [Show full text]
  • An Analysis of the Hermes8 Stream Ciphers
    An Analysis of the Hermes8 Stream Ciphers Steve Babbage1, Carlos Cid2, Norbert Pramstaller3,andH˚avard Raddum4 1 Vodafone Group R&D, Newbury, United Kingdom [email protected] 2 Information Security Group, Royal Holloway, University of London Egham, United Kingdom [email protected] 3 IAIK, Graz University of Technology Graz, Austria [email protected] 4 Dept. of Informatics, The University of Bergen, Bergen, Norway [email protected] Abstract. Hermes8 [6,7] is one of the stream ciphers submitted to the ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we present an analysis of the Hermes8 stream ciphers. In particular, we show an attack on the latest version of the cipher (Hermes8F), which requires very few known keystream bytes and recovers the cipher secret key in less than a second on a normal PC. Furthermore, we make some remarks on the cipher’s key schedule and discuss some properties of ci- phers with similar algebraic structure to Hermes8. Keywords: Hermes8, Stream Cipher, Cryptanalysis. 1 Introduction Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con- sisting of substitutions and shifts of the state register bytes. Two versions of the cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur- ing the first phase of evaluation, the cipher did not seem to present satisfactory performance in either software or hardware [4]. As a result, a slightly modified version of the cipher, named Hermes8F [7], was submitted for consideration dur- ing the second phase of eSTREAM.
    [Show full text]
  • A 1 Gbps Chaos-Based Stream Cipher Implemented in 0.18 Μm CMOS Technology
    electronics Article A 1 Gbps Chaos-Based Stream Cipher Implemented in 0.18 µm CMOS Technology Miguel Garcia-Bosque * , Guillermo Díez-Señorans, Adrián Pérez-Resa, Carlos Sánchez-Azqueta, Concepción Aldea and Santiago Celma Group of Electronic Design, University of Zaragoza, 50009 Zaragoza, Spain; [email protected] (G.D.-S.); [email protected] (A.P.-R.); [email protected] (C.S.-A.); [email protected] (C.A.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +34-876-55-3539 Received: 15 May 2019; Accepted: 29 May 2019; Published: 1 June 2019 Abstract: In this work, a novel chaos-based stream cipher based on a skew tent map is proposed and implemented in a 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) technology. The proposed ciphering algorithm uses a linear feedback shift register that perturbs the orbits generated by the skew tent map after each iteration. This way, the randomness of the generated sequences is considerably improved. The implemented stream cipher was capable of achieving encryption speeds of 1 Gbps by using an approximate area of 20, 000 2-NAND equivalent gates, with a power ∼ consumption of 24.1 mW. To test the security of the proposed cipher, the generated keystreams were subjected to National Institute of Standards and Technology (NIST) randomness tests, proving that they were undistinguishable from truly random sequences. Finally, other security aspects such as the key sensitivity, key space size, and security against reconstruction attacks were studied, proving that the stream cipher is secure. Keywords: stream cipher; PRNG; cryptography; chaotic map; skew tent map 1. Introduction Despite the large number of encryption algorithms proposed in previous decades, there is still a great interest in the field of cryptography [1,2].
    [Show full text]
  • Security in Wireless Sensor Networks Using Cryptographic Techniques
    American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-01, pp-50-56 www.ajer.org Research Paper Open Access Security in Wireless Sensor Networks using Cryptographic Techniques Madhumita Panda Sambalpur University Institute of Information Technology(SUIIT)Burla, Sambalpur, Odisha, India. Abstract: -Wireless sensor networks consist of autonomous sensor nodes attached to one or more base stations.As Wireless sensor networks continues to grow,they become vulnerable to attacks and hence the need for effective security mechanisms.Identification of suitable cryptography for wireless sensor networks is an important challenge due to limitation of energy,computation capability and storage resources of the sensor nodes.Symmetric based cryptographic schemes donot scale well when the number of sensor nodes increases.Hence public key based schemes are widely used.We present here two public – key based algorithms, RSA and Elliptic Curve Cryptography (ECC) and found out that ECC have a significant advantage over RSA as it reduces the computation time and also the amount of data transmitted and stored. Keywords: -Wireless Sensor Network,Security, Cryptography, RSA,ECC. I. WIRELESS SENSOR NETWORK Sensor networks refer to a heterogeneous system combining tiny sensors and actuators with general- purpose computing elements. These networks will consist of hundreds or thousands of self-organizing, low- power, low-cost wireless nodes deployed to monitor and affect the environment [1]. Sensor networks are typically characterized by limited power supplies, low bandwidth, small memory sizes and limited energy. This leads to a very demanding environment to provide security.
    [Show full text]