On the Design and Analysis of Stream Ciphers Hell, Martin

Total Page:16

File Type:pdf, Size:1020Kb

On the Design and Analysis of Stream Ciphers Hell, Martin On the Design and Analysis of Stream Ciphers Hell, Martin 2007 Link to publication Citation for published version (APA): Hell, M. (2007). On the Design and Analysis of Stream Ciphers. Department of Electrical and Information Technology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 On the Design and Analysis of Stream Ciphers Martin Hell Ph.D. Thesis September 13, 2007 Martin Hell Department of Electrical and Information Technology Lund University Box 118 S-221 00 Lund, Sweden e-mail: [email protected] http://www.eit.lth.se/ ISBN: 91-7167-043-2 ISRN: LUTEDX/TEIT-07/1039-SE c Martin Hell, 2007 Abstract his thesis presents new cryptanalysis results for several different stream Tcipher constructions. In addition, it also presents two new stream ci- phers, both based on the same design principle. The first attack is a general attack targeting a nonlinear combiner. A new class of weak feedback polynomials for linear feedback shift registers is identified. By taking samples corresponding to the linear recurrence rela- tion, it is shown that if the feedback polynomial has taps close together an adversary to take advantage of this by considering the samples in a vector form. Next, the self-shrinking generator and the bit-search generator are ana- lyzed. Both designs are based on irregular decimation. For the self-shrinking generator, it is shown how to recover the internal state knowing only a few keystream bits. The complexity of the attack is similar to the previously best known but uses a negligible amount of memory. An attack requiring a large keystream segment is also presented. It is shown to be asymptotically better than all previously known attacks. For the bit-search generator, an algorithm that recovers the internal state is given as well as a distinguishing attack that can be very efficient if the feedback polynomial is not carefully chosen. Following this, two recently proposed stream cipher designs, Pomaranch and Achterbahn, are analyzed. Both stream ciphers are designed with small hardware complexity in mind. For Pomaranch Version 2, based on an im- provement of previous analysis of the design idea, a key recovery attack is given. Also, for all three versions of Pomaranch, a distinguishing attack is given. For Achterbahn, it is shown how to recover the key of the latest version, known as Achterbahn-128/80. The last part of the thesis introduces two new stream cipher designs, namely Grain and Grain-128. The ciphers are designed to be very small in hardware. They also have the distinguishing feature of allowing users to increase the speed of the ciphers by adding extra hardware. iii Contents Abstract iii Preface ix 1 Introduction 1 1.1 Cryptology . 2 1.2 Cryptographic Primitives . 3 1.3 Block Ciphers and Stream Ciphers . 4 1.4 Thesis Outline . 6 2 Stream Ciphers 9 2.1 Classification of Stream Ciphers . 10 2.2 Common Design Blocks . 13 2.2.1 Feedback Shift Registers . 13 2.2.2 Boolean Functions . 15 2.2.3 S-Boxes . 18 2.2.4 Large Tables . 19 2.2.5 T-functions . 20 2.2.6 Some Well-Known Stream Ciphers . 20 2.3 Methods of Cryptanalysis . 22 2.3.1 Classifying the Attack . 22 2.3.2 Brute Force Attack . 23 2.3.3 Time-Memory Tradeoff Attacks . 24 2.3.4 Correlation Attacks . 27 2.3.5 Algebraic Attacks . 29 2.3.6 Guess and Determine Attacks . 31 2.3.7 Side Channel Attacks . 31 2.4 Hypothesis Testing . 32 2.5 Summary . 38 v vi Contents 3 Correlation Attacks Using a New Class of Weak... 39 3.1 Preliminaries . 40 3.2 A Basic Distinguishing Attack From a Low Weight Feedback Polynomial . 40 3.3 A More General Distinguisher Using Vectors . 41 3.4 Tweaking the Parameters in the Attack . 45 3.4.1 How gi(x) Affects the Results . 45 3.4.2 Increasing Vector Length . 47 3.4.3 Increasing the Number of Groups l ............ 47 3.5 Finding a Multiple of the Form a(x) ............... 48 3.5.1 Finding Low Weight Multiples . 48 3.5.2 Finding Multiples With Groups . 49 3.6 Comparing the Proposed Attack With a Basic Distinguishing Attack . 50 3.7 Summary . 51 4 Two New Attacks on the Self-Shrinking Generator 53 4.1 Description of the Self-Shrinking Generator . 54 4.2 Previous Attacks on the Self-Shrinking Generator . 56 4.2.1 Short Keystream Attacks . 56 4.2.2 Long Keystream Attacks . 57 4.3 New Attack Using Short Keystream . 58 4.4 New Attack Using Long Keystream . 60 4.4.1 Main Ideas . 60 4.4.2 Method for Cryptanalysis . 60 4.4.3 Asymptotic Complexity . 62 4.5 Improving the Attack . 64 4.5.1 Asymptotic Complexity . 65 4.5.2 Comparison to Time-Memory-Data Tradeoff Attacks . 66 4.6 Summary . 68 5 Some Attacks on the Bit-Search Generator 69 5.1 Description of the Bit-Search Generator . 70 5.2 Reconstructing the Input Sequence . 71 5.2.1 Analysis of the Algorithm . 73 5.2.2 A Data-Time Tradeoff . 74 5.3 Distinguishing Attack . 76 5.4 Related Work . 79 5.5 Summary . 80 Contents vii 6 Cryptanalysis of the Pomaranch Family of Stream Ciphers 81 6.1 Jump Registers . 82 6.2 Pomaranch Version 1 . 84 6.3 Biased Linear Relations in Jump Register Outputs . 85 6.4 Pomaranch Version 2 - Improving Jump Register Parameters . 87 6.5 A New Algorithm That Can Find Linear Relations . 88 6.5.1 Vectorial Representation of a Linear Approximation . 88 6.5.2 Finding a Biased Linear Approximation . 90 6.6 Algorithm Applied to Pomaranch Version 2 . 91 6.6.1 New Attack on Pomaranch Version 2 . 91 6.6.2 Distinguishing and Key Recovery Attacks . 94 6.6.3 Simulation Results . 95 6.7 Pomaranch Version 3 - New Jump Registers . 96 6.8 General Distinguising Attacks on All Versions . 97 6.8.1 Period of Registers . 98 6.8.2 Output Function . 98 6.8.3 Linear Approximations of Jump Registers . 99 6.8.4 Attacking Different Versions of Pomaranch . 99 6.8.5 Attack Complexities for the Existing Versions of the Pomaranch Family . 103 6.9 A Resynchronization Collision Attack . 106 6.9.1 Attack Complexities for Pomaranch . 108 6.10 Summary . 109 7 Cryptanalysis of the Achterbahn Family of Stream Ciphers 111 7.1 History of Achterbahn, Part I . 112 7.2 Description of Achterbahn-128/80 . 112 7.2.1 Notation . 113 7.2.2 Design Parameters . 113 7.2.3 Initialization . 115 7.3 Analysis of Achterbahn . 116 7.3.1 Attacking the Achterbahn Family of Stream Ciphers . 116 7.3.2 Summary of Attack Procedure . 118 7.4 The Sum of Dependent Variables . 119 7.5 Attack on Achterbahn-80 . 120 7.5.1 Generalization of the Attack Using Quadratic Approx- imations . 121 7.5.2 Attack Complexities for Achterbahn-80 . 121 7.6 Attack on Achterbahn-128 . 121 7.6.1 Generalization of the Attack Using Quadratic Approx- imations . 122 7.6.2 Generalization of the Attack Using Cubic Approxima- tions . 122 viii Contents 7.6.3 Attack Complexities for Achterbahn-128 . 123 7.7 Recovering the Key . 123 7.8 Further Improvements . 125 7.9 History of Achterbahn, Part II . 125 7.10 Summary . 126 8 The Grain Family of Stream Ciphers 127 8.1 Design specifications . 128 8.1.1 Grain - Design Parameters . 129 8.1.2 Grain-128 - Design Parameters . 130 8.2 Throughput Rate . 132 8.3 Security and Design Choices . 133 8.3.1 Linear Approximations . 133 8.3.2 Time-Memory Tradeoff Attacks . 136 8.3.3 Algebraic Attacks . 136 8.3.4 Chosen-IV Attacks . 137 8.3.5 Fault Attacks . 138 8.4 Hardware Performance . 139 8.5 Summary . 143 9 Concluding Remarks 145 Bibliography 146 Preface his thesis presents the results from my time as a Ph.D. student at the TDepartment of Electrical and Information Technology at Lund Univer- sity in Sweden. Parts of the material have been presented at international conferences and are based on results from the following papers: √ H. ENGLUND, M. HELL AND T. JOHANSSON. Correlation Attacks Using a New Class of Weak Feedback Polynomials. In B. Roy and W. Meier, editors, Fast Software Encryption – 2004, Delhi, India, volume 3017 of Lecture Notes in Computer Science, pages 127–142. Springer- Verlag, 2004. √ M. HELL AND T. JOHANSSON. Some Attacks on the Bit-Search Gener- ator. In H. Gilbert and H. Handschuh, editors, Fast Software Encryption – 2005, Paris, France, volume 3557 of Lecture Notes in Computer Science, pages 215–227. Springer-Verlag, 2005.
Recommended publications
  • A Differential Fault Attack on MICKEY
    A Differential Fault Attack on MICKEY 2.0 Subhadeep Banik and Subhamoy Maitra Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road, Kolkata-108. s.banik [email protected], [email protected] Abstract. In this paper we present a differential fault attack on the stream cipher MICKEY 2.0 which is in eStream's hardware portfolio. While fault attacks have already been reported against the other two eStream hardware candidates Trivium and Grain, no such analysis is known for MICKEY. Using the standard assumptions for fault attacks, we show that if the adversary can induce random single bit faults in the internal state of the cipher, then by injecting around 216:7 faults and performing 232:5 computations on an average, it is possible to recover the entire internal state of MICKEY at the beginning of the key-stream generation phase. We further consider the scenario where the fault may affect at most three neighbouring bits and in that case we require around 218:4 faults on an average. Keywords: eStream, Fault attacks, MICKEY 2.0, Stream Cipher. 1 Introduction The stream cipher MICKEY 2.0 [4] was designed by Steve Babbage and Matthew Dodd as a submission to the eStream project. The cipher has been selected as a part of eStream's final hardware portfolio. MICKEY is a synchronous, bit- oriented stream cipher designed for low hardware complexity and high speed. After a TMD tradeoff attack [16] against the initial version of MICKEY (ver- sion 1), the designers responded by tweaking the design by increasing the state size from 160 to 200 bits and altering the values of some control bit tap loca- tions.
    [Show full text]
  • Detection and Exploitation of Small Correlations in Stream Ciphers
    Detection and Exploitation of Small Correlations in Stream Ciphers Masterthesis conducted under the guidance of Prof. Dr. Joachim Rosenthal and Dr. Gérard Maze Institute of Mathematics, University of Zurich 2008 Urs Wagner Outline This thesis gives an overview of stream ciphers based on linear feedback shift registers (LFSR) and their vulnerability to correlation attacks. In the rst chapter, a short introduction to symmetric key ciphers is given. The main focus hereby is on LFSR based stream ciphers. Further, the principles of LFSR are presented. The chapter is then closed by a stream cipher example, the Gee Generator. The second chapter treats the general approach of correlation attacks. Moreover a correlation attack is mounted on the Gee Generator and the practical results are presented. Boolean functions play an important role in stream cipher designs. The Walsh transform, a tool to analyze the cryptographic properties of Boolean functions, is introduced in chapter 3. Additionally, the cryptographic properties themselves are discussed. In the fourth chapter, an improved kind of correlation attack -the fast correlation attack- is presented. It exploits the same weaknesses in the stream cipher designs as the correlation attack, the mode of operation is however dierent. In the last chapter, the insights gained in the previous chapters are used to suggest an attack on a stream cipher by Philips, named Hitag 2. 1 Acknowledgments This thesis was written in the course of my master's studies at the University of Zurich. I am grateful to Prof. Joachim Rosenthal who gave me the opportunity to write my master thesis in cryptography. Special thanks go to Dr.
    [Show full text]
  • Pseudo-Random Bit Generators Based on Linear-Feedback Shift Registers in a Programmable Device
    184 Measurement Automation Monitoring, Jun. 2016, no. 06, vol. 62, ISSN 2450-2855 Maciej PAROL, Paweł DĄBAL, Ryszard SZPLET MILITARY UNIVERSITY OF TECHNOLOGY, FACULTY OF ELECTRONICS 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland Pseudo-random bit generators based on linear-feedback shift registers in a programmable device Abstract known how to construct LFSRs with the maximum period since they correspond to primitive polynomials over the binary field F2. We present the results of comparative study on three pseudo-random bit The N-bit length LFSR with a well-chosen feedback function generators (PRBG) based on various use of linear-feedback shift registers gives the sequence of maximal period (LFSR). The project was focused on implementation and tests of three such PRBG in programmable device Spartan 6, Xilinx. Tests of the designed PRBGs were performed with the use of standard statistical tests =2 . (1) NIST SP800-22. For example, an eight bit LFSR will have 255 states. LFSRs Keywords: pseudo-random bit generators, linear-feedback shift register, generators have good statistical properties, however they have low programmable device. linear complexity equal to their order (only N in considered case), which is the main drawback of primitive LFSRs. They can 1. Introduction be easily reconstructed having a short output segment of length just 2N [4]. In addition, they are very easy for implementation in In dynamically developed domains of information technology programmable devices. Figure 1 presents the structure of a simple and telecommunication, sequences of random generated bits are LFSR-based generator. still more and more required and used. There are two common sources of random bits, i.e.
    [Show full text]
  • Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng
    Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng 1 Introduction – Chris Eng _ Director of Security Services, Veracode _ Former occupations . 2000-2006: Senior Consulting Services Technical Lead with Symantec Professional Services (@stake up until October 2004) . 1998-2000: US Department of Defense _ Primary areas of expertise . Web Application Penetration Testing . Network Penetration Testing . Product (COTS) Penetration Testing . Exploit Development (well, a long time ago...) _ Lead developer for @stake’s now-extinct WebProxy tool 2 Assumptions _ This talk is aimed primarily at penetration testers but should also be useful for developers to understand how your application might be vulnerable _ Assumes basic understanding of cryptographic terms but requires no understanding of the underlying math, etc. 3 Agenda 1 Problem Statement 2 Crypto Refresher 3 Analysis Techniques 4 Case Studies 5 Q & A 4 Problem Statement 5 Problem Statement _ What do you do when you encounter unknown data in web applications? . Cookies . Hidden fields . GET/POST parameters _ How can you tell if something is encrypted or trivially encoded? _ How much do I really have to know about cryptography in order to exploit implementation weaknesses? 6 Goals _ Understand some basic techniques for analyzing and breaking down unknown data _ Understand and recognize characteristics of bad crypto implementations _ Apply techniques to real-world penetration tests 7 Crypto Refresher 8 Types of Ciphers _ Block Cipher . Operates on fixed-length groups of bits, called blocks . Block sizes vary depending on the algorithm (most algorithms support several different block sizes) . Several different modes of operation for encrypting messages longer than the basic block size .
    [Show full text]
  • Key Differentiation Attacks on Stream Ciphers
    Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register.
    [Show full text]
  • Stream Ciphers (Contd.)
    Stream Ciphers (contd.) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives • Non-linear feedback shift registers • Stream ciphers using LFSRs: – Non-linear combination generators – Non-linear filter generators – Clock controlled generators – Other Stream Ciphers Low Power Ajit Pal IIT Kharagpur 1 Non-linear feedback shift registers • A Feedback Shift Register (FSR) is non-singular iff for all possible initial states every output sequence of the FSR is periodic. de Bruijn Sequence An FSR with feedback function fs(jj−−12 , s ,..., s jL − ) is non-singular iff f is of the form: fs=⊕jL−−−−+ gss( j12 , j ,..., s jL 1 ) for some Boolean function g. The period of a non-singular FSR with length L is at most 2L . If the period of the output sequence for any initial state of a non-singular FSR of length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a de Bruijn sequence. Low Power Ajit Pal IIT Kharagpur 2 Example f (,xxx123 , )1= ⊕⊕⊕ x 2 x 3 xx 12 t x1 x2 x3 t x1 x2 x3 0 0 0 0 4 0 1 1 1 1 0 0 5 1 0 1 2 1 1 0 6 0 1 0 3 1 1 1 3 0 0 1 Converting a maximal length LFSR to a de-Bruijn FSR Let R1 be a maximum length LFSR of length L with linear feedback function: fs(jj−−12 , s ,..., s jL − ). Then the FSR R2 with feedback function: gs(jj−−12 , s ,..., s jL − )=⊕ f sjj−−12 , s ,..., s j −L+1 is a de Bruijn FSR.
    [Show full text]
  • An Analysis of the Hermes8 Stream Ciphers
    An Analysis of the Hermes8 Stream Ciphers Steve Babbage1, Carlos Cid2, Norbert Pramstaller3,andH˚avard Raddum4 1 Vodafone Group R&D, Newbury, United Kingdom [email protected] 2 Information Security Group, Royal Holloway, University of London Egham, United Kingdom [email protected] 3 IAIK, Graz University of Technology Graz, Austria [email protected] 4 Dept. of Informatics, The University of Bergen, Bergen, Norway [email protected] Abstract. Hermes8 [6,7] is one of the stream ciphers submitted to the ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we present an analysis of the Hermes8 stream ciphers. In particular, we show an attack on the latest version of the cipher (Hermes8F), which requires very few known keystream bytes and recovers the cipher secret key in less than a second on a normal PC. Furthermore, we make some remarks on the cipher’s key schedule and discuss some properties of ci- phers with similar algebraic structure to Hermes8. Keywords: Hermes8, Stream Cipher, Cryptanalysis. 1 Introduction Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con- sisting of substitutions and shifts of the state register bytes. Two versions of the cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur- ing the first phase of evaluation, the cipher did not seem to present satisfactory performance in either software or hardware [4]. As a result, a slightly modified version of the cipher, named Hermes8F [7], was submitted for consideration dur- ing the second phase of eSTREAM.
    [Show full text]
  • Recovering the MSS-Sequence Via CA
    Procedia Computer Science Volume 80, 2016, Pages 599–606 ICCS 2016. The International Conference on Computational Science Recovering the MSS-sequence via CA Sara D. Cardell1 and Amparo F´uster-Sabater2∗ 1 Instituto de Matem´atica,Estat´ıstica e Computa¸c˜ao Cient´ıfica UNICAMP, Campinas, Brazil [email protected] 2 Instituto de Tecnolog´ıas F´ısicasy de la Informaci´on CSIC, Madrid, Spain [email protected] Abstract A cryptographic sequence generator, the modified self-shrinking generator (MSSG), was re- cently designed as a novel version of the self-shrinking generator. Taking advantage of the cryptographic properties of the irregularly decimated generator class, the MSSG was mainly created to be used in stream cipher applications and hardware implementations. Nevertheless, in this work it is shown that the MSSG output sequence, the so-called modified self-shrunken sequence, is generated as one of the output sequences of a linear model based on Cellular Au- tomata that use rule 60 for their computations. Thus, the linearity of these structures can be advantageous exploited to recover the complete modified self-shrunken sequence from a number of intercepted bits. Keywords: Modified Self-Shrinking Generator, Cellular Automata, Rule 60, Cryptography 1 Introduction Symmetric key ciphers, also known as secret key ciphers [10, 12 ], are characterized by the fact that the same key is used in both encryption and decryption processes. They are commonly classified into block ciphers and stream ciphers. As opposed to block ciphers, in stream ciphers thesymbolsizetobeencryptedequalsthesizeofeachcharacterinthealphabet.Ifweusea binary alphabet, then the encryption is performed bit by bit, that is, every bit in the original message (plaintext) is encrypted separate and independently from the previous or the following bits.
    [Show full text]
  • A 32-Bit RC4-Like Keystream Generator
    A 32-bit RC4-like Keystream Generator Yassir Nawaz1, Kishan Chand Gupta2 and Guang Gong1 1Department of Electrical and Computer Engineering University of Waterloo Waterloo, ON, N2L 3G1, CANADA 2Centre for Applied Cryptographic Research University of Waterloo Waterloo, ON, N2L 3G1, CANADA [email protected], [email protected], [email protected] Abstract. In this paper we propose a new 32-bit RC4 like keystream generator. The proposed generator produces 32 bits in each iteration and can be implemented in software with reasonable memory requirements. Our experiments show that this generator is 3.2 times faster than original 8-bit RC4. It has a huge internal state and offers higher resistance against state recovery attacks than the original 8-bit RC4. We analyze the ran- domness properties of the generator using a probabilistic approach. The generator is suitable for high speed software encryption. Keywords: RC4, stream ciphers, random shuffle, keystream generator. 1 Introduction RC4 was designed by Ron Rivest in 1987 and kept as a trade secret until it leaked in 1994. In the open literatures, there is very small number of proposed keystream generator that are not based on shift registers. An interesting design approach of RC4 which have originated from exchange- shuffle paradigm [10], is to use a relatively big table/array that slowly changes with time under the control of itself. As discussed by Goli´c in [5], for such a generator a few general statistical properties of the keystream can be measured by statistical tests and these criteria are hard to establish theoretically.
    [Show full text]
  • Iso/Iec 18033-4:2005(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-906455 INTERNATIONAL ISO/IEC STANDARD 18033-4 First edition 2005-07-15 Information technology — Security techniques — Encryption algorithms — Part 4: Stream ciphers Technologies de l'information — Techniques de sécurité — Algorithmes de chiffrement — Partie 4: Chiffrements en flot Reference number ISO/IEC 18033-4:2005(E) © ISO/IEC 2005 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-906455 ISO/IEC 18033-4:2005(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. © ISO/IEC 2005 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.
    [Show full text]
  • Stream Cipher Designs: a Review
    SCIENCE CHINA Information Sciences March 2020, Vol. 63 131101:1–131101:25 . REVIEW . https://doi.org/10.1007/s11432-018-9929-x Stream cipher designs: a review Lin JIAO1*, Yonglin HAO1 & Dengguo FENG1,2* 1 State Key Laboratory of Cryptology, Beijing 100878, China; 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China Received 13 August 2018/Accepted 30 June 2019/Published online 10 February 2020 Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan- tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data transfer or resource constraints, and has always been a hot and central research topic in cryptography. With the rapid development of network and communication technology, cipher algorithms play more and more crucial role in information security. Simultaneously, the application environment of cipher algorithms is in- creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To accommodate new strict requirements and provide systematic scientific basis for future designs, this paper reviews the development history of stream ciphers, classifies and summarizes the design principles of typical stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers. Keywords stream cipher, survey, lightweight, authenticated encryption, homomorphic encryption Citation Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63(3): 131101, https://doi.org/10.1007/s11432-018-9929-x 1 Introduction The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data, have triggered high demands in both efficiency and security of information processing.
    [Show full text]
  • MICKEY 2.0. 85: a Secure and Lighter MICKEY 2.0 Cipher Variant With
    S S symmetry Article MICKEY 2.0.85: A Secure and Lighter MICKEY 2.0 Cipher Variant with Improved Power Consumption for Smaller Devices in the IoT Ahmed Alamer 1,2,*, Ben Soh 1 and David E. Brumbaugh 3 1 Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences, La Trobe University, Victoria 3086, Australia; [email protected] 2 Department of Mathematics, College of Science, Tabuk University, Tabuk 7149, Saudi Arabia 3 Techno Authority, Digital Consultant, 358 Dogwood Drive, Mobile, AL 36609, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-431-292-034 Received: 31 October 2019; Accepted: 20 December 2019; Published: 22 December 2019 Abstract: Lightweight stream ciphers have attracted significant attention in the last two decades due to their security implementations in small devices with limited hardware. With low-power computation abilities, these devices consume less power, thus reducing costs. New directions in ultra-lightweight cryptosystem design include optimizing lightweight cryptosystems to work with a low number of gate equivalents (GEs); without affecting security, these designs consume less power via scaled-down versions of the Mutual Irregular Clocking KEYstream generator—version 2-(MICKEY 2.0) cipher. This study aims to obtain a scaled-down version of the MICKEY 2.0 cipher by modifying its internal state design via reducing shift registers and modifying the controlling bit positions to assure the ciphers’ pseudo-randomness. We measured these changes using the National Institutes of Standards and Testing (NIST) test suites, investigating the speed and power consumption of the proposed scaled-down version named MICKEY 2.0.85.
    [Show full text]