Year 2010 Issues on Cryptographic Algorithms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Design of Rijndael: AES - the Advanced Encryption Standard/Joan Daemen, Vincent Rijmen
Joan Daernen · Vincent Rijrnen Theof Design Rijndael AES - The Advanced Encryption Standard With 48 Figures and 17 Tables Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Springer TnL-1Jn Joan Daemen Foreword Proton World International (PWI) Zweefvliegtuigstraat 10 1130 Brussels, Belgium Vincent Rijmen Cryptomathic NV Lei Sa 3000 Leuven, Belgium Rijndael was the surprise winner of the contest for the new Advanced En cryption Standard (AES) for the United States. This contest was organized and run by the National Institute for Standards and Technology (NIST) be ginning in January 1997; Rij ndael was announced as the winner in October 2000. It was the "surprise winner" because many observers (and even some participants) expressed scepticism that the U.S. government would adopt as Library of Congress Cataloging-in-Publication Data an encryption standard any algorithm that was not designed by U.S. citizens. Daemen, Joan, 1965- Yet NIST ran an open, international, selection process that should serve The design of Rijndael: AES - The Advanced Encryption Standard/Joan Daemen, Vincent Rijmen. as model for other standards organizations. For example, NIST held their p.cm. Includes bibliographical references and index. 1999 AES meeting in Rome, Italy. The five finalist algorithms were designed ISBN 3540425802 (alk. paper) . .. by teams from all over the world. 1. Computer security - Passwords. 2. Data encryption (Computer sCIence) I. RIJmen, In the end, the elegance, efficiency, security, and principled design of Vincent, 1970- II. Title Rijndael won the day for its two Belgian designers, Joan Daemen and Vincent QA76.9.A25 D32 2001 Rijmen, over the competing finalist designs from RSA, IBl\!I, Counterpane 2001049851 005.8-dc21 Systems, and an English/Israeli/Danish team. -
Grade 6 Reading Student At–Home Activity Packet
Printer Warning: This packet is lengthy. Determine whether you want to print both sections, or only print Section 1 or 2. Grade 6 Reading Student At–Home Activity Packet This At–Home Activity packet includes two parts, Section 1 and Section 2, each with approximately 10 lessons in it. We recommend that your student complete one lesson each day. Most lessons can be completed independently. However, there are some lessons that would benefit from the support of an adult. If there is not an adult available to help, don’t worry! Just skip those lessons. Encourage your student to just do the best they can with this content—the most important thing is that they continue to work on their reading! Flip to see the Grade 6 Reading activities included in this packet! © 2020 Curriculum Associates, LLC. All rights reserved. Section 1 Table of Contents Grade 6 Reading Activities in Section 1 Lesson Resource Instructions Answer Key Page 1 Grade 6 Ready • Read the Guided Practice: Answers will vary. 10–11 Language Handbook, Introduction. Sample answers: Lesson 9 • Complete the 1. Wouldn’t it be fun to learn about Varying Sentence Guided Practice. insect colonies? Patterns • Complete the 2. When I looked at the museum map, Independent I noticed a new insect exhibit. Lesson 9 Varying Sentence Patterns Introduction Good writers use a variety of sentence types. They mix short and long sentences, and they find different ways to start sentences. Here are ways to improve your writing: Practice. Use different sentence types: statements, questions, imperatives, and exclamations. Use different sentence structures: simple, compound, complex, and compound-complex. -
Vector Boolean Functions: Applications in Symmetric Cryptography
Vector Boolean Functions: Applications in Symmetric Cryptography José Antonio Álvarez Cubero Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Universidad Politécnica de Madrid This dissertation is submitted for the degree of Doctor Ingeniero de Telecomunicación Escuela Técnica Superior de Ingenieros de Telecomunicación November 2015 I would like to thank my wife, Isabel, for her love, kindness and support she has shown during the past years it has taken me to finalize this thesis. Furthermore I would also liketo thank my parents for their endless love and support. Last but not least, I would like to thank my loved ones such as my daughter and sisters who have supported me throughout entire process, both by keeping me harmonious and helping me putting pieces together. I will be grateful forever for your love. Declaration The following papers have been published or accepted for publication, and contain material based on the content of this thesis. 1. [7] Álvarez-Cubero, J. A. and Zufiria, P. J. (expected 2016). Algorithm xxx: VBF: A library of C++ classes for vector Boolean functions in cryptography. ACM Transactions on Mathematical Software. (In Press: http://toms.acm.org/Upcoming.html) 2. [6] Álvarez-Cubero, J. A. and Zufiria, P. J. (2012). Cryptographic Criteria on Vector Boolean Functions, chapter 3, pages 51–70. Cryptography and Security in Computing, Jaydip Sen (Ed.), http://www.intechopen.com/books/cryptography-and-security-in-computing/ cryptographic-criteria-on-vector-boolean-functions. (Published) 3. [5] Álvarez-Cubero, J. A. and Zufiria, P. J. (2010). A C++ class for analysing vector Boolean functions from a cryptographic perspective. -
Security Evaluation of Stream Cipher Enocoro-128V2
Security Evaluation of Stream Cipher Enocoro-128v2 Hell, Martin; Johansson, Thomas 2010 Link to publication Citation for published version (APA): Hell, M., & Johansson, T. (2010). Security Evaluation of Stream Cipher Enocoro-128v2. CRYPTREC Technical Report. Total number of authors: 2 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Security Evaluation of Stream Cipher Enocoro-128v2 Martin Hell and Thomas Johansson Abstract. This report presents a security evaluation of the Enocoro- 128v2 stream cipher. Enocoro-128v2 was proposed in 2010 and is a mem- ber of the Enocoro family of stream ciphers. This evaluation examines several different attacks applied to the Enocoro-128v2 design. No attack better than exhaustive key search has been found. -
Public Key Cryptography And
PublicPublic KeyKey CryptographyCryptography andand RSARSA Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/ Washington University in St. Louis CSE571S ©2011 Raj Jain 9-1 OverviewOverview 1. Public Key Encryption 2. Symmetric vs. Public-Key 3. RSA Public Key Encryption 4. RSA Key Construction 5. Optimizing Private Key Operations 6. RSA Security These slides are based partly on Lawrie Brown’s slides supplied with William Stallings’s book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011. Washington University in St. Louis CSE571S ©2011 Raj Jain 9-2 PublicPublic KeyKey EncryptionEncryption Invented in 1975 by Diffie and Hellman at Stanford Encrypted_Message = Encrypt(Key1, Message) Message = Decrypt(Key2, Encrypted_Message) Key1 Key2 Text Ciphertext Text Keys are interchangeable: Key2 Key1 Text Ciphertext Text One key is made public while the other is kept private Sender knows only public key of the receiver Asymmetric Washington University in St. Louis CSE571S ©2011 Raj Jain 9-3 PublicPublic KeyKey EncryptionEncryption ExampleExample Rivest, Shamir, and Adleman at MIT RSA: Encrypted_Message = m3 mod 187 Message = Encrypted_Message107 mod 187 Key1 = <3,187>, Key2 = <107,187> Message = 5 Encrypted Message = 53 = 125 Message = 125107 mod 187 = 5 = 125(64+32+8+2+1) mod 187 = {(12564 mod 187)(12532 mod 187)... (1252 mod 187)(125 mod 187)} mod 187 Washington University in -
2018-07-11 and for Information to the Iso Member Bodies and to the Tmb Members
Sergio Mujica Secretary-General TO THE CHAIRS AND SECRETARIES OF ISO COMMITTEES 2018-07-11 AND FOR INFORMATION TO THE ISO MEMBER BODIES AND TO THE TMB MEMBERS ISO/IEC/ITU coordination – New work items Dear Sir or Madam, Please find attached the lists of IEC, ITU and ISO new work items issued in June 2018. If you wish more information about IEC technical committees and subcommittees, please access: http://www.iec.ch/. Click on the last option to the right: Advanced Search and then click on: Documents / Projects / Work Programme. In case of need, a copy of an actual IEC new work item may be obtained by contacting [email protected]. Please note for your information that in the annexed table from IEC the "document reference" 22F/188/NP means a new work item from IEC Committee 22, Subcommittee F. If you wish to look at the ISO new work items, please access: http://isotc.iso.org/pp/. On the ISO Project Portal you can find all information about the ISO projects, by committee, document number or project ID, or choose the option "Stages search" and select "Search" to obtain the annexed list of ISO new work items. Yours sincerely, Sergio Mujica Secretary-General Enclosures ISO New work items 1 of 8 2018-07-11 Alert Detailed alert Timeframe Reference Document title Developing committee VA Registration dCurrent stage Stage date Guidance for multiple organizations implementing a common Warning Warning – NP decision SDT 36 ISO/NP 50009 (ISO50001) EnMS ISO/TC 301 - - 10.60 2018-06-10 Warning Warning – NP decision SDT 36 ISO/NP 31050 Guidance for managing -
Analysis of Selected Block Cipher Modes for Authenticated Encryption
Analysis of Selected Block Cipher Modes for Authenticated Encryption by Hassan Musallam Ahmed Qahur Al Mahri Bachelor of Engineering (Computer Systems and Networks) (Sultan Qaboos University) – 2007 Thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy School of Electrical Engineering and Computer Science Science and Engineering Faculty Queensland University of Technology 2018 Keywords Authenticated encryption, AE, AEAD, ++AE, AEZ, block cipher, CAESAR, confidentiality, COPA, differential fault analysis, differential power analysis, ElmD, fault attack, forgery attack, integrity assurance, leakage resilience, modes of op- eration, OCB, OTR, SHELL, side channel attack, statistical fault analysis, sym- metric encryption, tweakable block cipher, XE, XEX. i ii Abstract Cryptography assures information security through different functionalities, es- pecially confidentiality and integrity assurance. According to Menezes et al. [1], confidentiality means the process of assuring that no one could interpret infor- mation, except authorised parties, while data integrity is an assurance that any unauthorised alterations to a message content will be detected. One possible ap- proach to ensure confidentiality and data integrity is to use two different schemes where one scheme provides confidentiality and the other provides integrity as- surance. A more compact approach is to use schemes, called Authenticated En- cryption (AE) schemes, that simultaneously provide confidentiality and integrity assurance for a message. AE can be constructed using different mechanisms, and the most common construction is to use block cipher modes, which is our focus in this thesis. AE schemes have been used in a wide range of applications, and defined by standardisation organizations. The National Institute of Standards and Technol- ogy (NIST) recommended two AE block cipher modes CCM [2] and GCM [3]. -
Ch 13 Digital Signature
1 CH 13 DIGITAL SIGNATURE Cryptography and Network Security HanJung Mason Yun 2 Index 13.1 Digital Signatures 13.2 Elgamal Digital Signature Scheme 13.3 Schnorr Digital Signature Scheme 13.4 NIST Digital Signature Algorithm 13.6 RSA-PSS Digital Signature Algorithm 3 13.1 Digital Signature - Properties • It must verify the author and the date and time of the signature. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • The digital signature function includes authentication. 4 5 6 Attacks and Forgeries • Key-Only attack • Known message attack • Generic chosen message attack • Directed chosen message attack • Adaptive chosen message attack 7 Attacks and Forgeries • Total break • Universal forgery • Selective forgery • Existential forgery 8 Digital Signature Requirements • It must be a bit pattern that depends on the message. • It must use some information unique to the sender to prevent both forgery and denial. • It must be relatively easy to produce the digital signature. • It must be relatively easy to recognize and verify the digital signature. • It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message. • It must be practical to retain a copy of the digital signature in storage. 9 Direct Digital Signature • Digital signature scheme that involves only the communication parties. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • Thus, the digital signature function includes the authentication function. -
Fair and Efficient Hardware Benchmarking of Candidates In
Fair and Efficient Hardware Benchmarking of Candidates in Cryptographic Contests Kris Gaj CERG George Mason University Partially supported by NSF under grant no. 1314540 Designs & results for this talk contributed by “Ice” Homsirikamol Farnoud Farahmand Ahmed Ferozpuri Will Diehl Marcin Rogawski Panasayya Yalla Cryptographic Standard Contests IX.1997 X.2000 AES 15 block ciphers → 1 winner NESSIE I.2000 XII.2002 CRYPTREC XI.2004 IV.2008 34 stream 4 HW winners eSTREAM ciphers → + 4 SW winners X.2007 X.2012 51 hash functions → 1 winner SHA-3 I.2013 TBD 57 authenticated ciphers → multiple winners CAESAR 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 time Evaluation Criteria in Cryptographic Contests Security Software Efficiency Hardware Efficiency µProcessors µControllers FPGAs ASICs Flexibility Simplicity Licensing 4 AES Contest 1997-2000 Final Round Speed in FPGAs Votes at the AES 3 conference GMU results Hardware results matter! 5 Throughput vs. Area Normalized to Results for SHA-256 and Averaged over 11 FPGA Families – 256-bit variants Overall Normalized Throughput Early Leader Overall Normalized Area 6 SHA-3 finalists in high-performance FPGA families 0.25 0.35 0.50 0.79 1.00 1.41 2.00 2.83 4.00 7 FPGA Evaluations – From AES to SHA-3 AES eSTREAM SHA-3 Design Primary optimization Throughput Area Throughput/ target Throughput/ Area Area Multiple architectures No Yes Yes Embedded resources No No Yes Benchmarking Multiple FPGA families No No Yes Specialized tools No No Yes Experimental results No No Yes Reproducibility Availability -
Implementation and Performance Evaluation of XTR Over Wireless Network
Implementation and Performance Evaluation of XTR over Wireless Network By Basem Shihada [email protected] Dept. of Computer Science 200 University Avenue West Waterloo, Ontario, Canada (519) 888-4567 ext. 6238 CS 887 Final Project 19th of April 2002 Implementation and Performance Evaluation of XTR over Wireless Network 1. Abstract Wireless systems require reliable data transmission, large bandwidth and maximum data security. Most current implementations of wireless security algorithms perform lots of operations on the wireless device. This result in a large number of computation overhead, thus reducing the device performance. Furthermore, many current implementations do not provide a fast level of security measures such as client authentication, authorization, data validation and data encryption. XTR is an abbreviation of Efficient and Compact Subgroup Trace Representation (ECSTR). Developed by Arjen Lenstra & Eric Verheul and considered a new public key cryptographic security system that merges high level of security GF(p6) with less number of computation GF(p2). The claim here is that XTR has less communication requirements, and significant computation advantages, which indicate that XTR is suitable for the small computing devices such as, wireless devices, wireless internet, and general wireless applications. The hoping result is a more flexible and powerful secure wireless network that can be easily used for application deployment. This project presents an implementation and performance evaluation to XTR public key cryptographic system over wireless network. The goal of this project is to develop an efficient and portable secure wireless network, which perform a variety of wireless applications in a secure manner. The project literately surveys XTR mathematical and theoretical background as well as system implementation and deployment over wireless network. -
Internet Engineering Task Force (IETF) S. Kanno Request for Comments: 6367 NTT Software Corporation Category: Informational M
Internet Engineering Task Force (IETF) S. Kanno Request for Comments: 6367 NTT Software Corporation Category: Informational M. Kanda ISSN: 2070-1721 NTT September 2011 Addition of the Camellia Cipher Suites to Transport Layer Security (TLS) Abstract This document specifies forty-two cipher suites for the Transport Security Layer (TLS) protocol to support the Camellia encryption algorithm as a block cipher. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6367. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. -
TS 102 176-1 V2.1.1 (2011-07) Technical Specification
ETSI TS 102 176-1 V2.1.1 (2011-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 1: Hash functions and asymmetric algorithms 2 ETSI TS 102 176-1 V2.1.1 (2011-07) Reference RTS/ESI-000080-1 Keywords e-commerce, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.