Blockchain: Hype Or Reality

Total Page:16

File Type:pdf, Size:1020Kb

Blockchain: Hype Or Reality Bart Preneel September 2019 Blockchain: Hype or Reality Outline Blockchain: A short history of blockchain Hype or Reality? Opportunities PROF. DR. IR. BART PRENEEL COSIC, AN IMEC LAB AT KU LEUVEN, BELGIUM What can we learn from PKI? [email protected] Challenges ENISA SUMMER SCHOOL, HERAKLION Do you need a blockchain? 17 SEPTEMBER 2019 1 2 History Currencies = maintaining memory George Santaja (1864-1952) Those who cannot remember the past are condemned to repeat it Susa, Iran, ca 3300 BC Cuneiform, Sumeria, ca 2600 BC 3 Slide inspired by George Danezis4 1 Bart Preneel September 2019 Blockchain: Hype or Reality Hash functions (1975): one-way Digital signatures (1975): easy to compute but hard to invert “equivalent” to manual signature RIPEMD-160 SHA-256 X Donald agrees to SHA-512 Public key This is an input to a crypto- pay to Hillary 100 graphic hash function. The SHA-3 input is a very long string, that Bitcoins on Sept. is reduced by the hash function to a string of fixed 17 2019 length. There are additional f 1A3FD4128A198FB3CA345932 security conditions: it should Private key be very hard to find an input hashing to a given value (a preimage) or to find two colliding inputs (a collision). 5 6 Byzantine generals problem (1982) Merkle tree (1979) (can deal with at most 1/3 traitors) Using a hash function f to authenticate a set of messages through a x12 logarithmic number of values x5678 Applications: digital signatures, revocation… root 7 8 2 Bart Preneel September 2019 Blockchain: Hype or Reality Electronic cash (1985) [David Chaum] Timestamping (1990) Financial Institutions Collect documents and hash them with a Merkle tree (clearing and settlement) Chain these trees together with a hash chain 1990-1998 Publish intermediate values on a regular basis Issuer Acquirer Withdrawal Deposit or load on-line/off-line Payment hash (cash transfer) f f f Customer Merchant 0 chain t1 t2 t3 9 10 Timestamping: Surety Technologies (1994) Digital money 1996-2008 http://www.surety.com/ e-gold (1996-2008) ◦ currency backed by real commodity: gold ◦ centralized ledger of transactions ◦ becomes a crime magnet (1 million users) ◦ charges of money laundering and operating without a license ◦ assets liquidated: $90M in gold MojoNation (2000-2002) https://www.belspo.be/belspo/organisation/Publ/pub_ostc/NO/rNOb007_en.pdf ◦ peer-to-peer file storage service paid with “Mojo” Belgian TIMESEC project (1996-1998) ◦ collapsed under hyperinflation ◦ inspired BitTorrent tit-for-tat incentive scheme Estonia: Cybernetica 11 12 3 Bart Preneel September 2019 Blockchain: Hype or Reality Bitcoin Bitcoin (2008): Satoshi Nakamoto (paper October 2008 – mining January 2009) Everyone can produce money “While the system works well enough for most transactions, it still No central bank suffers from the inherent weaknesses of the trust based model.” Everyone can verify transactions “What is needed is an electronic payment system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party. “ X Cryptocurrency with distributed generation and verification of money Open system where anyone can join 13 14 Paying with Bitcoin Paying with Bitcoin Donald Hillary Donald Hillary Block chain Block chain name amount name amount 1BxgB4tjcoDnz1LC7bRqyybbE8YNigUQn5 70.00 1BxgB4tjcoDnz1LC7bRqyybbE8YNigUQn5 70.00 19EULTY5DMyvDM6krKtcuvcUoHT4T3QmQL 80.02 19EULTY5DMyvDM6krKtcuvcUoHT4T3QmQL 80.02 1CMMwinpNduzooWeJ4sK9u7Lkp4YAyK2Lw 5.00 1CMMwinpNduzooWeJ4sK9u7Lkp4YAyK2Lw 5.00 16PVjaawyWqWnzyttJTAyv7hTcPNmRnVzY 2.50 +1.00 16PVjaawyWqWnzyttJTAyv7hTcPNmRnVzY 3.50 16LNAxwBQupD7yDC8RUSRhyb62BFAZtgae 0.17 16LNAxwBQupD7yDC8RUSRhyb62BFAZtgae 0.17 12tQUEb8zzdQSXkgt1553z7zS6Fm1cMQZB 10.00 -1,00 12tQUEb8zzdQSXkgt1553z7zS6Fm1cMQZB 9.00 16VT.wYYCLUNgzB8Xs8fYtWWxHR4wdyHm5 2.30 16VTrwYYCLUNgzB8Xs8fYtWWxHR4wdyHm5 2.30 15 16 4 Bart Preneel September 2019 Blockchain: Hype or Reality Paying with Bitcoin Paying with Bitcoin Anyone can verify a digital signature Public key Donald agrees to Anyone can verify whether the “account” of 12tQUEb8zzdQSXkgt15 pay to Hillary 53z7zS6Fm1cMQZB Donald contains enough money 1 Bitcoin. Sept. 17, 2019 Private key 17 18 Managing the blockchain Voting? Sybil attack Miners all over the world follow up all the transactions But due to communication errors or fraud there are multiple versions 19 20 5 Bart Preneel September 2019 Blockchain: Hype or Reality Puzzles (a lottery) – [Dwork-Naor’92][Hashcash] Block Chain: a public decentralized ledger Bitcoin transactions Block 1 Block 2 Block 3 block chain nonce2 nonce3 (240 nonce1 f “small”f “small”f “small” Gbyte) 0 t1 t2 t3 Also include in every block timestamp and difficulty level of puzzle 21 22 Why does Bitcoin have value? Market price in USD (market cap 185 B$) 1 Bitcoin $10,337 2019-09-15 China + Korea ban Mount Gox The worth of a thing 2011 bubble Cyprus crisis is the price it will bring 23 24 6 Bart Preneel September 2019 Blockchain: Hype or Reality Market price in USD (market cap 185 B$) Energy cost: 50-75 TWh per year (same as Greece) 1 Bitcoin $10,337 2019-09-15 Coinbase has grown from 5.5M to 20+M clients since Jan. 2017 Yet another hack 25 https://digiconomist.net/ 26 Energy cost: 50-75 TWh per year (same as Greece) Number of transactions per day 2-5 transactions/s Peak: 10 transactions/s large share goes to a few addresses Alipaypeak 256.000/s Visa peak 25.000/s Western Union peak: 750/s https://digiconomist.net/ 27 28 7 Bart Preneel September 2019 Blockchain: Hype or Reality Is Bitcoin is the money of the future? Is Bitcoin is the money of the future? 3 main purposes of money Computer scientists set the 2019 • medium of exchange monetary policy • store of value We don’t understand Bitcoin • unit of account 2013 29 30 Total value of all gold? 7.5 T$ Total market cap 270 B$ Total value of stock exchange? 70 T$ https://coinmarketcap.com/all/views/all/ Business and governments tend to dislike ◦ distributed control ◦ full transparency ◦ unclear governance (or anarchy) ◦ uncontrolled money supply Facebook libra? restrict ◦ write, verify or read ◦ to non-monetary applications 31 32 8 Bart Preneel September 2019 Blockchain: Hype or Reality Distributed Ledger: a range of solutions Blockchain opportunities Consortium/Hybrid Public Blockchain Fully Private Blockchain Blockchain • No central point of • Controlled by more than • Controlled by one Consensus Provenance Immutability control by individuals, two individuals, individual, corporation or corporations or corporations or government (no governments governments consensus needed) • Permissionless to • Permission on • Permission on participate participation from participation from owner • Concensus based on consortium necessary necessary Finality Transparency Accountability “proof of work” • Arbitrary consensus • Readability of the • Examples: mechanism blockchain can be public • Bitcoin • Readability of the or restricted to one blockchain can be public • Ethereum Reduce overheads and or restricted to the controls consortium trusted third parties Cost savings • Example: RSCOIN intermediaries (UCLondon) gatekeepers and censors 33 34 Shared replicated permissioned ledger Shared ledger 2015 Permissioned Smart Contracts Party A’s Records Counter-party Bank records records Ledger Security Ledger and Privacy Consensus Party C’s Records Auditor records Ledger Party B’s Records Ledger Smart contracts: $300M by 2023 (CACG 32%) All technical building blocks of distributed ledgers were developed by 1990 https://www.marketresearchfuture.com/reports/smart-contracts-market-4588 Figure https://blogs.wsj.com/cio/2016/02/02/cio-explainer-what-is-blockchain/ 35 36 9 Bart Preneel September 2019 Blockchain: Hype or Reality Gartner Hype Cycle Emerging Technologies The PKI hype (1996-2000): unified security 2003: PKI in slope of enlightenment E-mail Web 2014: cryptocurrencies just over the peak 2015: idem and crypto exchanges in trough of disillusionment 2016: blockchain at the peak Desktop 2017: blockchain just over the peak PKI 2018: blockchain sliding down, but a dedicated hype cycle for blockchain business VPN 2019: only Distributed Autonomous Organization (DAO): innovation trigger ERP 37 38 PKI: lessons learned (2): what worked PKI: lessons learned EMV (1993) High stock market valuations: “.com” hype EMV: 7.1 billion cards (55% of total) and 50 million terminals Single global PKI proposed in the late 1980s Highly centralized You cannot create trust out of cryptography (few exceptions) Hierarchical trust model Misaligned incentives invalidate business model: why should users pay for certificates? Interoperability problems High integration cost – resistance to change 39 Figure: Cryptomathic 40 10 Bart Preneel September 2019 Blockchain: Hype or Reality PKI: lessons learned (2): what “worked” PKI: lessons learned (2): what “worked” SSL/TLS (1995) SSL/TLS (1995): certificate transparency (2013) SSL/TLS certificates: 660 CAs in browser issued about 60 million server Certificate transparency: signed Merkle tree certificates used by 5 billion devices Browser vendors decide who is included Centralized way to detect mistakes or abuse Users need to trust union of all of the CAs by CAs Trust has been abused by several governments and companies ◦ e.g. Diginotar For social good Issue: privacy Revocation only implemented in browsers around 2001 Extended Validation (2007) – died around 2018 Recent addition since 2016: Let’s Encrypt: 50 million domains ◦ Price paid: limited checking 41 42
Recommended publications
  • Statistical Weaknesses in 20 RC4-Like Algorithms and (Probably) the Simplest Algorithm Free from These Weaknesses - VMPC-R
    Statistical weaknesses in 20 RC4-like algorithms and (probably) the simplest algorithm free from these weaknesses - VMPC-R Bartosz Zoltak www.vmpcfunction.com [email protected] Abstract. We find statistical weaknesses in 20 RC4-like algorithms including the original RC4, RC4A, PC-RC4 and others. This is achieved using a simple statistical test. We found only one algorithm which was able to pass the test - VMPC-R. This algorithm, being approximately three times more complex then RC4, is probably the simplest RC4-like cipher capable of producing pseudo-random output. Keywords: PRNG; CSPRNG; RC4; VMPC-R; stream cipher; distinguishing attack 1 Introduction RC4 is a popular and one of the simplest symmetric encryption algorithms. It is also probably one of the easiest to modify. There is a bunch of RC4 modifications out there. But is improving the old RC4 really as simple as it appears to be? To state the contrary we confront 20 candidates (including the original RC4) against a simple statistical test. In doing so we try to support four theses: 1. Modifying RC4 is easy to do but it is hard to do well. 2. Statistical weaknesses in almost all RC4-like algorithms can be easily found using a simple test discussed in this paper. 3. The only RC4-like algorithm which was able to pass the test was VMPC-R. It is approximately three times more complex than RC4. We believe that any algorithm simpler than VMPC-R would most likely fail the test. 4. Before introducing a new RC4-like algorithm it might be a good idea to run the statistical test described in this paper.
    [Show full text]
  • Security Evaluation of the K2 Stream Cipher
    Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 .
    [Show full text]
  • Distinguishing Attacks on the Stream Cipher Py
    Distinguishing Attacks on the Stream Cipher Py Souradyuti Paul‡, Bart Preneel‡, and Gautham Sekar‡† ‡Katholieke Universiteit Leuven, Dept. ESAT/COSIC, Kasteelpark Arenberg 10, B–3001, Leuven-Heverlee, Belgium †Birla Institute of Technology and Science, Pilani, India, Dept. of Electronics and Instrumentation, Dept. of Physics. {souradyuti.paul, bart.preneel}@esat.kuleuven.be, [email protected] Abstract. The stream cipher Py designed by Biham and Seberry is a submission to the ECRYPT stream cipher competition. The cipher is based on two large arrays (one is 256 bytes and the other is 1040 bytes) and it is designed for high speed software applications (Py is more than 2.5 times faster than the RC4 on Pentium III). The paper shows a statistical bias in the distribution of its output-words at the 1st and 3rd rounds. Exploiting this weakness, a distinguisher with advantage greater than 50% is constructed that requires 284.7 randomly chosen key/IV’s and the first 24 output bytes for each key. The running time and the 84.7 89.2 data required by the distinguisher are tini · 2 and 2 respectively (tini denotes the running time of the key/IV setup). We further show that the data requirement can be reduced by a factor of about 3 with a distinguisher that considers outputs of later rounds. In such case the 84.7 running time is reduced to tr ·2 (tr denotes the time for a single round of Py). The Py specification allows a 256-bit key and a keystream of 264 bytes per key/IV. As an ideally secure stream cipher with the above specifications should be able to resist the attacks described before, our results constitute an academic break of Py.
    [Show full text]
  • New Developments in Cryptology Outline Outline Block Ciphers AES
    New Developments in Cryptography March 2012 Bart Preneel Outline New developments in cryptology • 1. Cryptology: concepts and algorithms Prof. Bart Preneel • 2. Cryptology: protocols COSIC • 3. Public-Key Infrastructure principles Bart.Preneel(at)esatDOTkuleuven.be • 4. Networking protocols http://homes.esat.kuleuven.be/~preneel • 5. New developments in cryptology March 2012 • 6. Cryptography best practices © Bart Preneel. All rights reserved 1 2 Outline Block ciphers P1 P2 P3 • Block ciphers/stream ciphers • Hash functions/MAC algorithms block block block • Modes of operation and authenticated cipher cipher cipher encryption • How to encrypt/sign using RSA C1 C2 C3 • Multi-party computation • larger data units: 64…128 bits •memoryless • Concluding remarks • repeat simple operation (round) many times 3 3-DES: NIST Spec. Pub. 800-67 AES (2001) (May 2004) S S S S S S S S S S S S S S S S • Single DES abandoned round • two-key triple DES: until 2009 (80 bit security) • three-key triple DES: until 2030 (100 bit security) round MixColumnsS S S S MixColumnsS S S S MixColumnsS S S S MixColumnsS S S S hedule Highly vulnerable to a c round • Block length: 128 bits related key attack • Key length: 128-192-256 . Key S Key . bits round A $ 10M machine that cracks a DES Clear DES DES-1 DES %^C& key in 1 second would take 149 trillion text @&^( years to crack a 128-bit key 1 23 1 New Developments in Cryptography March 2012 Bart Preneel AES variants (2001) AES implementations: • AES-128 • AES-192 • AES-256 efficient/compact • 10 rounds • 12 rounds • 14 rounds • sensitive • classified • secret and top • NIST validation list: 1953 implementations (2008: 879) secret plaintext plaintext plaintext http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html round round.
    [Show full text]
  • Automated Techniques for Hash Function and Block Cipher Cryptanalysis
    Arenberg Doctoral School of Science, Engineering & Technology Faculty of Engineering Department of Electrical Engineering (ESAT) Automated Techniques for Hash Function and Block Cipher Cryptanalysis Nicky MOUHA Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Engineering June 2012 Automated Techniques for Hash Function and Block Cipher Cryptanalysis Nicky MOUHA Jury: Dissertation presented in partial Prof. em. dr. ir. Yves D. Willems, chair fulfillment of the requirements for Prof. dr. ir. Bart Preneel, supervisor the degree of Doctor of Engineering Prof. dr. ir. Vincent Rijmen, secretary Prof. dr. ir. Frank Piessens Dr. Svetla Petkova-Nikova Dr. Matt Robshaw (Applied Cryptography Group, Orange Labs, France) June 2012 Our greatest glory is not in never falling, but in rising every time we fall. Confucius c 2012 Nicky Mouha � D/2012/7515/71 ISBN 978-94-6018-535-9 If I have seen further it is only by standing on the shoulders of giants. Isaac Newton Acknowledgments Every research paper is a puzzle piece, linking other pieces together to reveal a bigger picture. As such, research can’t be done in isolation. In the past few years, I’ve been extremely fortunate to meet the world’s best and brightest in thefield of symmetric-key cryptography. Many times, I’ve found myself to be the stupidest and most ignorant person in the room. To me, such experiences have been exciting and humbling, but most of all a great opportunity to learn. Therefore, I would like to personally thank everyone who contributed in one way or another to this thesis.
    [Show full text]
  • Design and Analysis of RC4-Like Stream Ciphers
    Design and Analysis of RC4-like Stream Ciphers by Matthew E. McKague A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Combinatorics and Optimization Waterloo, Ontario, Canada, 2005 c Matthew E. McKague 2005 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Matthew E. McKague ii Abstract RC4 is one of the most widely used ciphers in practical software ap- plications. In this thesis we examine security and design aspects of RC4. First we describe the functioning of RC4 and present previously published analyses. We then present a new cipher, Chameleon which uses a similar internal organization to RC4 but uses different methods. The remainder of the thesis uses ideas from both Chameleon and RC4 to develop design strategies for new ciphers. In particular, we develop a new cipher, RC4B, with the goal of greater security with an algorithm comparable in simplicity to RC4. We also present design strategies for ciphers and two new ciphers for 32-bit processors. Finally we present versions of Chameleon and RC4B that are implemented using playing-cards. iii Acknowledgements This thesis was undertaken under the supervision of Alfred Menezes at the University of Waterloo. The cipher Chameleon was developed under the supervision of Allen Herman at the University of Regina. Financial support was provided by the University of Waterloo, the University of Regina and the National Science and Engineering Research Council of Canada (NSERC).
    [Show full text]
  • Phd Thesis, Katholieke Universiteit Leuven, FSE 2003, Volume 2887 of Lecture Notes in Computer Science, Pages 274– Mar
    Christophe DE CANNI KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT TOEGEPASTE WETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK Kasteelpark Arenberg 10, B–3001 Heverlee A ERE ` ANALYSIS AND DESIGN OF SYMMETRIC ENCRYPTION ALGORITHMS ANALYSIS AND DESIGN OF SYMMETRIC ENCRYPTION ALGORITHMS Promotor: Proefschrift voorgedragen tot Prof. dr. ir. Bart Preneel het behalen van het doctoraat in de toegepaste wetenschappen door Christophe DE CANNIERE` Mei 2007 Mei 2007 KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT TOEGEPASTE WETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK Kasteelpark Arenberg 10, B–3001 Heverlee A ANALYSIS AND DESIGN OF SYMMETRIC ENCRYPTION ALGORITHMS Jury: Proefschrift voorgedragen tot Prof. Y. Willems, voorzitter het behalen van het doctoraat Prof. B. Preneel, promotor in de toegepaste wetenschappen Prof. T. Johansson (Lunds Tekniska H¨ogskola) door Prof. V. Rijmen (Technische Universit¨at Graz) Prof. M. Van Barel Christophe DE CANNIERE` Prof. J. Vandewalle Prof. P. Wambacq U.D.C. 681.3*D46 Mei 2007 i Acknowledgments The years leading to this doctoral dissertation have been for me an exciting period of discovery and growth, made possible by the help and support of numerous people who accompanied me on my journey. I wish to gratefully acknowledge their essential contribution to the results presented here. First of all, I would like to thank my supervisor, Prof. Bart Preneel. Not only did he direct my research all along, he also introduced me to a large cross section of the worldwide cryptographic community, of which he is such a distinguished member. The participation in the ECRYPT projects which he leads has given me the opportunity to meet and work with a lot of em- inent cryptographers; it has also been the direct motivation for part of my work.
    [Show full text]
  • The Truth on Tpy
    The Truth on TPy Eli Biham∗ Jennifer Seberry† February 29, 2008 Abstract In this note we refer to the security of the Py and TPy families, as discussed in several papers in recent years. We investigate the published attacks, and show that no attacks on TPy, TPypy and TPy6 have ever been published, whose complexities are within the bounds set by the security claims of these ciphers. Also, only a single attack on Py was published which may be considered within the scope of the security claims — as a response to this attack the Py family was tweaked to TPy, TPypy and TPy6. We conclude that the TPy family of ciphers is highly secure, and recommend using them in applications that require secure stream ciphers. 1 Introduction In this note we investigate the claims of the papers that study the Py and TPy families [2, 3, 4], and discuss their accuracy. As stated in the original paper on Py [2], the inventors of Py and TPy welcome any technique for the cryptanalysis or study of these families. The inventors of Py and TPy also believe that many of the techniques discussed in the various papers are interesting and important for the further study of these families, and point out some possible weaknesses that may be used in the future to attack these families. As such, we are especially pleased to thank the authors of [18] who found a weakness of the IV setup of the Py family, and thus allowed us to improve the ciphers, by a tweak, leading to the TPy family.
    [Show full text]
  • SFINKS: a Synchronous Stream Cipher for Restricted Hardware Environments ?
    SFINKS: A Synchronous Stream Cipher for Restricted Hardware Environments ? An Braeken?? and Joseph Lano? ? ? and Nele Mentens and Bart Preneel and Ingrid Verbauwhede Katholieke Universiteit Leuven Dept. Elect. Eng.-ESAT/SCD-COSIC, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium fan.braeken,joseph.lano,nele.mentens,bart.preneel,[email protected] Abstract. We present SFINKS, a low-cost synchronous stream cipher for hardware applications with an associated authentication mechanism. The stream cipher is based F on a Simple Filter generator, using the INverse function in 216 to generate the Key Stream. The design is based on simple and well-studied concepts, and its security is analyzed with respect to the portfolio of known cryptanalytic attacks for filter generators. 1 Introduction For efficient encryption of data, cryptography mainly uses two types of symmetric algorithms, block ciphers and stream ciphers. In the past decades, block ciphers have become the most widely used technology. This is mainly due to the block cipher standard DES [32] and its successor AES [33]. The current AES is a secure encryption algorithm that offers excellent performance on a variety of hardware and software environments. As block ciphers are often used in a stream cipher mode such as CTR and OFB, stream ciphers may offer equivalent security at a lower cost. The aim of this paper is to propose a low-cost synchronous stream cipher for hardware applications with an associated authentication mechanism. The design we propose is a simple synchronous stream cipher using a memoryless nonlinear filter. We will motivate our choices made for the building blocks in the following sections.
    [Show full text]
  • Hash-Functions from Block Ciphers
    Computer Security and Cryptography CS381 来学嘉 计算机科学与工程系 电院3-423室 34205440 1356 4100825 [email protected] 2015-05 Organization • Week 1 to week 16 (2015-03 to 2014-06) • 东中院-3-102 • Monday 3-4节; week 9-16 • Wednesday 3-4节; week 1-16 • lecture 10 + exercise 40 + random tests 40 + other 10 • Ask questions in class – counted as points • Turn ON your mobile phone (after lecture) • Slides and papers: – http://202.120.38.185/CS381 • computer-security – http://202.120.38.185/references • TA: Geshi Huang [email protected] • Send homework to the TA Rule: do the homework on your own! 2 Contents • Introduction -- What is security? • Cryptography – Classical ciphers – Today’s ciphers – Public-key cryptography – Hash functions and MAC – Authentication protocols • Applications – Digital certificates – Secure email – Internet security, e-banking • Computer and network security – Access control – Malware – Firewall 3 Content • Hash function – usage and basic properties • Iterated hash function – Relationship between Hash function and its round (compress) function • Real compress functions – Using block cipher – Dedicated hash functions, MD5,SHA1 • Security and attacks • SHA-3 • MAC 4 References • Bart Preneel, The State of Cryptographic Hash Functions, http://www.cosic.esat.kuleuven.ac.be/publications/ • G. Yuval, “How to swindle Rabin," Cryptologia, Vol. 3, 1979, pp. 187-189 • Ralph Merkle. One way Hash functions and DES. In Gilles Brassard, editor, Advances in Cryptology: CRYPTO 89, LNCS 435. Springer-Verlag. 1989: 428–446. • Ivan Damgard. A design principle for Hash functions. In Gilles Brassard, editor, Advances in Cryptology: CRYPTO 89, LNCS 435. Springer-Verlag. 1989:416~427. • ISO/IEC 10118, Information technology - Security techniques - Hash-functions, – Part 1: General", – Part 2: Hash-functions using an n-bit block cipher algorithm," – Part 3: Dedicated hash-functions," – Part 4: Hash-functions using modular arithmetic,“ • M.
    [Show full text]
  • Survey and Benchmark of Stream Ciphers for Wireless Sensor Networks
    Survey and Benchmark of Stream Ciphers for Wireless Sensor Networks Nicolas Fournel1, Marine Minier2, and St´ephane Ub´eda2 1 LIP, ENS Lyon - Compsys (Bureau 347) 46, Alle d’Italie - 69364 LYON Cedex 07 - France [email protected] 2 CITI - INSA de Lyon - ARES INRIA Project Bˆatiment L´eonardde Vinci 21 Avenue Jean Capelle, 69621 Villeurbanne Cedex - France [email protected] Abstract. For security applications in wireless sensor networks (WSNs), choosing best algorithms in terms of energy-efficiency and of small-storage requirements is a real challenge because the sensor networks must be autonomous. In [22], the authors have benchmarked on a dedicated plat- form some block-ciphers using several modes of operations and have de- duced the best block cipher to use in the context of WSNs. This article proposes to study on a dedicated platform of sensors some stream ciphers. First, we sum-up the security provided by the chosen stream ciphers (especially the ones dedicated to software uses recently proposed in the European Project Ecrypt, workpackage eStream [27]) and presents some implementation tests performed on the platform [16]. Keywords: stream ciphers, sensors, benchmarks. Introduction Sensor networks are made by the tremendous advances and convergence of micro- electro-mechanical systems (MEMS), wireless communication technologies and digital electronics. Sensor networks are composed of a large number of tiny de- vices or sensors which monitor their surrounding area to measure environmental information, to detect movements, vibrations, etc. Wireless sensor networks can be really useful in many civil and military areas for collecting, processing and monitoring environmental data.
    [Show full text]
  • Cryptanalysis of AES-Based Hash Functions
    Cryptanalysis of AES-Based Hash Functions by Martin Schl¨affer A PhD Thesis Presented to the Faculty of Computer Science in Partial Fulfillment of the Requirements for the PhD Degree Assessors Prof. Dr. Ir. Vincent Rijmen (TU Graz, Austria) Prof. Dr. Lars Ramkilde Knudsen (DTU, Denmark) March 2011 Institute for Applied Information Processing and Communications (IAIK) Faculty of Computer Science Graz University of Technology, Austria Abstract In this thesis we analyze the security of cryptographic hash functions. We fo- cus on AES-based designs submitted to the NIST SHA-3 competition. For most AES-based designs, proofs against differential and linear attacks exist. For exam- ple, the maximum differential probability of any 8-round differential trail of the 300 AES is 2− . Therefore, any standard differential attack is out of scope. How- ever, truncated differences can be used for simple AES-based round functions which has been shown in the attack on the hash function proposal Grindahl. For larger permutation- or block cipher-based hash functions, standard trun- cated differential attacks do not work either. Therefore, we proposed a new attack strategy to analyze AES-based hash functions: the rebound attack. The idea of the rebound attack is to use the available freedom in a collision attack to efficiently bypass the low probability parts of a (truncated) differential trail. The rebound attack consists of an inbound phase which exploits the available freedom, and a subsequent probabilistic outbound phase. Using this attack we are able to efficiently find right pairs for an 8-round truncated differential trail of the AES in known-key setting.
    [Show full text]