Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin

Total Page:16

File Type:pdf, Size:1020Kb

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities Final Report Reporting Period Start Date: January 14, 2002 Reporting Period End Date: May 13, 2004 Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, Caroline L. Breton, William D. Raatz, Stephen C. Ruppel, and Charles Kerans May 2004 Work Performed under DE-FC26-02NT15131 Prepared by Bureau of Economic Geology John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924 and New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology Socorro, NM 87801-4681 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. iii ABSTRACT The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 × 109 m3) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 × 105 m3). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 × 105 m3) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir- management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 × 105 m3) was 301.4 MMbbl (4.79 × 107 m3) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 × 109 m3). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 × 108 m3]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 × 108 m3), the v Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 × 108 m3]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 × 108 m3]). vi CONTENTS ABSTRACT ........................................................................................................................v EXECUTIVE SUMMARY ............................................................................................ xxi INTRODUCTION ..............................................................................................................1 EXPERIMENTAL METHODS ..........................................................................................5 RESULTS AND DISCUSSION .........................................................................................6 Definition of the Permian Basin ....................................................................................6 Identification of Significant-Sized Reservoirs...............................................................9 Texas........................................................................................................................9 New Mexico...........................................................................................................11 Total Permian Basin Production ............................................................................12 Play Definitions ...........................................................................................................12 Play Designations of Reservoirs ..................................................................................13 Mapping Reservoirs in GIS .........................................................................................18 Texas......................................................................................................................18 New Mexico...........................................................................................................20 Play Boundaries and Play Maps ..................................................................................20 Contents of the CD.......................................................................................................21 References....................................................................................................................22 PLAY SUMMARIES ........................................................................................................27 Ordovician Plays..........................................................................................................34 Ellenburger Selectively Dolomitized Ramp Carbonate.........................................36 Ellenburger Karst-Modified Restricted Ramp Carbonate......................................46 Simpson Cratonic Sandstone .................................................................................56 Silurian Plays ...............................................................................................................63 Fusselman Shallow Platform Carbonate................................................................65 Wristen Buildups and Platform Carbonate ............................................................75 vii Devonian Plays ............................................................................................................84 Devonian Thirtyone Deepwater Chert...................................................................86 Devonian Thirtyone Ramp Carbonate ...................................................................95 Mississippian Play .....................................................................................................101 Mississippian Platform Carbonate .......................................................................101 Pennsylvanian Plays...................................................................................................106 Northwest Shelf Strawn Patch Reef.....................................................................109 Northwest Shelf Upper Pennsylvanian Carbonate...............................................113 Pennsylvanian Platform Carbonate......................................................................121 Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate .........................132 Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone ...........144 Lower Permian Plays .................................................................................................151 Wolfcamp Platform Carbonate ............................................................................152 Wolfcamp/Leonard Slope and Basinal Carbonate...............................................162 Abo Platform Carbonate ......................................................................................172 Leonard Restricted Platform Carbonate...............................................................180 Bone Spring Basinal Sandstone and Carbonate...................................................200 Spraberry/Dean Submarine-Fan Sandstone .........................................................205 Upper Permian (Guadalupian) Plays .........................................................................213 Northwest Shelf San Andres Platform Carbonate ...............................................216 Eastern Shelf San Andres Platform Carbonate ....................................................226 San Andres Karst-Modified Platform Carbonate.................................................232 San Andres Platform Carbonate...........................................................................241 Upper San Andres and Grayburg Platform Mixed—Central Basin Platform Trend..............................................................................................256 Upper San Andres and Grayburg Platform Mixed—Artesia Vacuum Trend......260 San Andres/Grayburg Lowstand Carbonate ........................................................270 Grayburg Platform Mixed Clastic/Carbonate ......................................................276 Grayburg Platform Carbonate..............................................................................282
Recommended publications
  • Stratigraphy of the Upper Carboniferous Schooner Formation, Southern North Sea: Chemostratigraphy, Mineralogy, Palynology and Sm–Nd Isotope Analysis
    Stratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea: chemostratigraphy, mineralogy, palynology and Sm–Nd isotope analysis T. J. Pearce,1 D. McLean,2 D. Wray,3 D. K. Wright,4 C. J. Jeans,5 E. W. Mearns6 1, 4: Chemostrat Ltd, Units 3 & 4, Llanfyllin Enterprise Park, Llanfyllin, Powys, SY22 5DD 2: Palynology Research Facility, Department of Animal and Plant Sciences, Western Bank, Sheffield, S10 2TN 3: Department of Earth Sciences, University of Greenwich, Chatham Maritime, Kent, ME4 4TB 5: Department of Earth Sciences, Cambridge University, Downing Street, Cambridge, CB2 3EQ 6: Isotopic Ltd, Craigiebuckler House, Macaulay Drive, Aberdeen, AB15 8QH Summary The continental, predominantly redbed sequences of the Upper Carboniferous Schooner Formation (“Barren Red Measures”) from the southern North Sea represent a significant gas reservoir, but, as they are largely devoid of microfossils, interwell corre- lations are difficult. The stratigraphy of the formation is re-evaluated by applying a multidisciplinary approach, which includes chemostratigraphy, mineralogy, palynology, Sm–Nd isotopes, petrophysics and sedimentology, to well 44/21-3, as it has encountered a thick, relatively complete section through the Schooner Formation. The formation is divided into three chemo- stratigraphical units (S1, S2 and S3) and eleven sub-units on the basis of variations in the mudstone and sandstone data, these variations being linked to changes in provenance, depositional environment and climate. The chemostratigraphical zonation is compared with the biostratigraphical zonation of the same section – heavy-mineral data confirm the sediment source, and Sm– Nd isotope data provide a provenance age for the well 44/21-3 interval. The correlation potential of the new stratigraphical frame- work is tested on several scales, using data acquired from other southern North Sea wells and from Upper Carboniferous strata of the English Midlands.
    [Show full text]
  • Characterization of the Germania Spraberry Unit From
    CHARACTERIZATION OF THE GERMANIA SPRABERRY UNIT FROM ANALOG STUDIES AND CASED-HOLE NEUTRON LOG DATA A Thesis by BABAJIDE ADELEKAN OLUMIDE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Petroleum Engineering CHARACTERIZATION OF THE GERMANIA SPRABERRY UNIT FROM ANALOG STUDIES AND CASED-HOLE NEUTRON LOG DATA A Thesis by BABAJIDE ADELEKAN OLUMIDE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: ______________________________ ______________________________ David S. Schechter Jerry L. Jensen (Chair of Committee) (Member) ______________________________ ______________________________ Robert R. Berg Stephen A. Holditch (Member) (Head of Department) August 2004 Major Subject: Petroleum Engineering iii ABSTRACT Characterization of the Spraberry Unit from Analog Studies and Cased-Hole Neutron Log Data. (August 2004) Babajide Adelekan Olumide, B.Sc., University of Ibadan, Ibadan Chair of Advisory Committee: Dr. David S. Schechter The need for characterization of the Germania unit has emerged as a first step in the review, understanding and enhancement of the production practices applicable within the unit and the trend area in general. Petrophysical characterization of the Germania Spraberry units requires a unique approach for a number of reasons – limited core data, lack of modern log data and absence of directed studies within the unit. In the absence of the afore mentioned resources, an approach that will rely heavily on previous petrophysical work carried out in the neighboring ET O’Daniel unit (6.2 miles away), and normalization of the old log data prior to conventional interpretation techniques will be used.
    [Show full text]
  • The Carboniferous Bowland Shale Gas Study: Geology and Resource Estimation
    THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION The Carboniferous Bowland Shale gas study: geology and resource estimation i © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Disclaimer This report is for information only. It does not constitute legal, technical or professional advice. The Department of Energy and Climate Change does not accept any liability for any direct, indirect or consequential loss or damage of any nature, however caused, which may be sustained as a result of reliance upon the information contained in this report. All material is copyright. It may be produced in whole or in part subject to the inclusion of an acknowledgement of the source, but should not be included in any commercial usage or sale. Reproduction for purposes other than those indicated above requires the written permission of the Department of Energy and Climate Change. Suggested citation: Andrews, I.J. 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK. Requests and enquiries should be addressed to: Toni Harvey Senior Geoscientist - UK Onshore Email: [email protected] ii © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Foreword This report has been produced under contract by the British Geological Survey (BGS). It is based on a recent analysis, together with published data and interpretations. Additional information is available at the Department of Energy and Climate Change (DECC) website. https://www.gov.uk/oil-and-gas-onshore-exploration-and-production. This includes licensing regulations, maps, monthly production figures, basic well data and where to view and purchase data.
    [Show full text]
  • Natural Fractures in the Spraberry Formation
    Natural fractures in the AUTHORS John C. Lorenz ϳ Sandia National Spraberry Formation, Midland Laboratories, Department 6116, Mail Stop 0750, Albuquerque, New Mexico, 87185; basin, Texas: The effects of [email protected] John C. Lorenz is a Distinguished Member of Technical Staff at Sandia National Laboratories, where mechanical stratigraphy on he has worked on sedimentary and natural-fracture reservoir characterization issues. His work has focused fracture variability and on the Rocky Mountain region but has extended to reservoirs in other parts of the world. Lorenz earned a Ph.D. from Princeton University and joined Sandia in reservoir behavior 1981. Previously he was with the Peace Corps, Morocco, and worked for the U.S. Geological Survey. John C. Lorenz, Jenny L. Sterling, David S. Schechter, Jenny L. Sterling ϳ Department of Hydrology, Chris L. Whigham, and Jerry L. Jensen New Mexico Institute of Mining and Technology, Socorro, New Mexico, 87801; current address: Irell & Manella, LLP, Newport Beach, California, 92660; [email protected] ABSTRACT Jenny L. Sterling is a hydrogeologist who is working as a consultant and assistant for a leading environmental Horizontal cores from sandstone-siltstone reservoirs in the Spra- mediator at Irell & Manella, LLP. Jenny received her berry Formation (Midland basin, west Texas) have documented two master’s degree in hydrogeology from the New systems of dramatically different yet dynamically compatible nat- Mexico Institute of Mining and Technology in 2000, ural fractures, in reservoirs separated vertically by only 145 ft (44 where her thesis work included study of the Spraberry Formation and fracture generation. Prior to her m). Each system is capable of producing a different degree of the employment in the legal field, she worked as an northeast-trending permeability anisotropy recognized in Spraberry environmental consultant at Daniel B.
    [Show full text]
  • Speleogenesis and Delineation of Megaporosity and Karst
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F.
    [Show full text]
  • Hypogenic Speleogenesis Within Seven Rivers Evaporites: Coffee Ac Ve, Eddy County, New Mexico Kevin W
    Stephen F. Austin State University SFA ScholarWorks Faculty Publications Department of Geology 4-2008 Hypogenic Speleogenesis within Seven Rivers Evaporites: Coffee aC ve, Eddy County, New Mexico Kevin W. Stafford College of Sciences and Mathematics, Department of Geology, Stephen F. Austin State University, [email protected] Lewis Land Alexander Klimchouk Follow this and additional works at: http://scholarworks.sfasu.edu/geology Part of the Geology Commons Tell us how this article helped you. Recommended Citation Stafford, Kevin W.; Land, Lewis; and Klimchouk, Alexander, "Hypogenic Speleogenesis within Seven Rivers Evaporites: Coffee Cave, Eddy County, New Mexico" (2008). Faculty Publications. Paper 10. http://scholarworks.sfasu.edu/geology/10 This Article is brought to you for free and open access by the Department of Geology at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. K. W. Stafford, L. Land, and A. Klimchouk – Hypogenic speleogenesis within Seven Rivers Evaporites: Coffee Cave, Eddy County, New Mexico. Journal of Cave and Karst Studies, v. 70, no. 1, p. 47–61. HYPOGENIC SPELEOGENESIS WITHIN SEVEN RIVERS EVAPORITES: COFFEE CAVE, EDDY COUNTY, NEW MEXICO KEVIN W. STAFFORD1,2,LEWIS LAND2,3, AND ALEXANDER KLIMCHOUK3,4 Abstract: Coffee Cave, located in the lower Pecos region of southeastern New Mexico, illustrates processes of hypogenic speleogenesis in the middle Permian Seven Rivers Formation. Coffee Cave is a rectilinear gypsum maze cave with at least four stratigraphically-distinct horizons of development. Morphological features throughout the cave provide unequivocal evidence of hypogenic ascending speleogenesis in a confined aquifer system driven by mixed (forced and free) convection.
    [Show full text]
  • Salado Formation Followed
    GW -^SZ-i^ GENERAL CORRESPONDENCE YEAR(S): B. QUICK, Inc. 3340 Quail View Drive • Nashville, TN 37214 Phone: (615) 874-1077 • Fax: (615) 386-0110 Email: [email protected] November 12,2002 Mr Roger Anderson Environmental Bureau Chief New Mexico OCD 1220 S. ST. Francis Dr. 1 Santa Fe, NM 87507 Re: Class I Disposal Wells Dear Roger, I am still very interested in getting the disposal wells into salt caverns in Monument approved by OCD. It is my sincere belief that a Class I Disposal Well would be benefical to present and future industry in New Mexico. I suspect that one of my problems has been my distance from the property. I am hoping to find a local company or individuals who can be more on top of this project. In the past conditions have not justified the capital investment to permit, build and operate these wells and compete with surface disposal. Have there been any changes in OCD policy that might effect the permitting of these wells? If so, would you please send me any pretinent documents? Sincerely, Cc: Lori Wrotenbery i aoie or moments rage i uu Ctoraeferiz&MoiHi ©ff Bedded Satt fltoir Storage Caverns Case Stundy from the Midlamdl Basim Susan D. Hovorka Bureau of Economic Geology The University of Texas at Austin AUG1 0R9 9 Environmental Bureau Introduction to the Problem °" Conservation D/ws/on About solution-mined caverns l^Btg*** Geolojy_ofsalt Purpose, scope, and methods of our study Previous work: geologic setting of the bedded salt in the Permian Basin J^rV^W^' " Stratigraphic Units and Type Logs s Midland Basin stratigraphy
    [Show full text]
  • Harvey 1 Stratigraphic Well Early Drilling Outcomes
    *RYHUQPHQWRI:HVWHUQ$XVWUDOLD 'HSDUWPHQWRI0LQHVDQG3HWUROHXP *RYHUQPHQWRI:HVWHUQ$XVWUDOLD 'HSDUWPHQWRI0LQHVDQG3HWUROHXP 0LQHUDO7LWOHV Harvey 1 Stratigraphic Well Early Drilling Outcomes South West CO2 Geosequestration Hub – December 2012 *RYHUQPHQWRI:HVWHUQ$XVWUDOLD 'HSDUWPHQWRI0LQHVDQG3HWUROHXP (QYLURQPHQW *RYHUQPHQWRI:HVWHUQ$XVWUDOLD 'HSDUWPHQWRI0LQHVDQG3HWUROHXP 3HWUROHXP Harvey Shire Councillors visiting the Harvey 1 well drilling site. www.dmp.wa.gov.au/ccs 2012 – Harvey 1 Well Early Outcomes | 1 Contents Harvey 1 Well Graphic Summary ........................................................................................................ 3 Harvey 1 Well Overview: Mapping The Underground (Stratigraphy) ..................................................... 4 Drilling Outcomes .............................................................................................................................. 5 Harvey 1 Well Objectives ............................................................................................................... 5 Stratigraphic Well Data Collection ................................................................................................. 6 Determining Subsurface Strata Properties ..................................................................................... 6 Subsurface Geology ...................................................................................................................... 7 CO2 Storage in a Saline Aquifer .........................................................................................................
    [Show full text]
  • Mineral and Energy Resources of the BLM Roswell Resource Area, East-Central New Mexico
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Mineral and Energy Resources of the BLM Roswell Resource Area, East-central New Mexico by Susan Bartsch-Winkleri, editor Open-File Report 92-0261 1992 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Denver, Colorado iMail Stop 937 Federal Center P.O. Box 25046 Denver, Colorado 80225 MINERAL AND ENERGY RESOURCES OF THE BLM ROSWELL RESOURCE AREA, EAST-CENTRAL NEW MEXICO Summary.......................................................................................... 1 Introduction.................................................................................... 1 Location and geography of study area...................................... 1 Purpose and methodology........................................................ 3 Acknowledgements......................................................................... 4 Geology of east-central New Mexico, by Susan Bartsch-Winkler, with a section on Intrusive and extrusive alkaline rocks of the Lincoln County porphyry belt by Theodore J. Armbrustmacher 4 General..................................................................................... 4 Structure................................................................................. 5 Uplifts........................................................................
    [Show full text]
  • Dissolution of Permian Salado Salt During Salado Time in the Wink Area, Winkler County, Texas Kenneth S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Dissolution of Permian Salado salt during Salado time in the Wink area, Winkler County, Texas Kenneth S. Johnson, 1993, pp. 211-218 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • San Andres Formation
    StephenStephen C.C. Ruppel,Ruppel, SUBREGIONALSUBREGIONAL DEVELOPMENTDEVELOPMENT OFOF RESERVOIRRESERVOIR POROSITYPOROSITY ATAT AA MAJORMAJOR PERMIANPERMIAN UNCONFORMITY:UNCONFORMITY: BureauBureau ofof EconomicEconomic Geology,Geology, SANSAN ANDRESANDRES FORMATION,FORMATION, WESTWEST TEXASTEXAS TheThe UniversityUniversity ofof Texas,Texas, Austin,Austin, TX,TX, 78713-892478713-8924 ABSTRACTABSTRACT Most porosity development in carbonate reservoirs can be attributed in part or in total to diagenesis. This is especially true in Permian reservoirs of the Permian Basin, nearly all of which are dolomitized. Linking this diagenesis and associated porosity to unconformities representing major falls in sea level, INTRODUCTIONINTRODUCTION STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES however, is commonly problematic using typical reservoir data sets. New subsurface data from the San Andres Formation, a major oil-producing reservoir in Texas and New Mexico, coupled with relationships previously defined from SANSAN ANDRES-GRAYBURGANDRES-GRAYBURG STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES CYCLECYCLE STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES ARCHITECTUREARCHITECTURE equivalent outcrops, illustrate both the style and expression of such porosity SANSAN ANDRESANDRES STRUCTURESTRUCTURE FUHRMAN-MASCHOFUHRMAN-MASCHO FIELDFIELD Fuhrman-MaschoFuhrman-Mascho FieldField Fuhrman-MaschoFuhrman-Mascho SanSan AndresAndres Field,Field, AndrewsAndrews County,County, TexasTexas development. MIDDLE PERMIAN SEQUENCE STRATIGRAPHY ty Northwest Southeast MIDDLE PERMIAN SEQUENCE STRATIGRAPHY i -1100 PSL A-43 PermianPermian BasinBasin Gamma ray (API) Neutron porosity (%) PSL A-47 Depth Although the San Andres is characterized by an upward-shallowing succession Oil FMU 12A FMU 211 FMU 607 FMU 605 FMU 705 FMU 806 (ft) WFMU 110 WFMU 109 aturation WFMU 124 GR N GR N GR N GR N High Western Central Western 0 100 30 20 1010 0 -10 s GR N GR N of outer- to inner-ramp carbonate lithofacies in most platform settings, pervious Relative Algerita Western Permeabil GR N GR N ft GDP ft ft ft ft freq.
    [Show full text]
  • Geologic Map of the Kitchen Cove 7.5-Minute Quadrangle, Eddy County, New Mexico by Colin T
    Geologic Map of the Kitchen Cove 7.5-Minute Quadrangle, Eddy County, New Mexico By Colin T. Cikoski1 1New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, NM 87801 June 2019 New Mexico Bureau of Geology and Mineral Resources Open-file Digital Geologic Map OF-GM 276 Scale 1:24,000 This work was supported by the U.S. Geological Survey, National Cooperative Geologic Mapping Program (STATEMAP) under USGS Cooperative Agreement G18AC00201 and the New Mexico Bureau of Geology and Mineral Resources. New Mexico Bureau of Geology and Mineral Resources 801 Leroy Place, Socorro, New Mexico, 87801-4796 The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government or the State of New Mexico. Executive Summary The Kitchen Cove quadrangle lies along the northwestern margin of the Guadalupian Delaware basin southwest of Carlsbad, New Mexico. The oldest rocks exposed are Guadalupian (upper Permian) carbonate rocks of the Seven Rivers Formation of the Artesia Group, which is sequentially overlain by similar strata of the Yates and Tansill Formations of the same Group. Each of these consists dominantly of dolomitic beds with lesser fine-grained siliciclastic intervals, which accumulated in a marine or marginal-marine backreef or shelf environment. These strata grade laterally basinward (here, eastward) either at the surface or in the subsurface into the Capitan Limestone, a massive fossiliferous “reef complex” that lay along the Guadalupian Delaware basin margin and is locally exposed on the quadrangle at the mouths of Dark Canyon and Kitchen Cove.
    [Show full text]